20 research outputs found
Prediction of Partition Coefficients of Organic Compounds in Ionic Liquids Using a Temperature-Dependent Linear Solvation Energy Relationship with Parameters Calculated through a Group Contribution Method
This article discusses the prediction of partition coefficients of organic compounds in ionic liquids
Activity Coefficients at Infinite Dilution for Organic Compounds Dissolved in 1-Alkyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)imide Ionic Liquids Having Six-, Eight-, and Ten-Carbon Alkyl Chains
International audienceActivity coefficients at infinite dilution (gamma(proportional to)(1,2)) for 40 diverse probe solutes, including various (cyclo)alkanes, alkenes, alkynes, aromatic hydrocarbons, alcohols, thiophene, ethers, nitroalkanes, and ketones, were measured by inverse gas chromatography at temperatures from 323 to 343 K in three homologous 1-alkyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquids (ILs), bearing hexyl, octyl, and decyl side chains. The retention data were further converted to gas-to-IL and water-to-IL partition coefficients using the corresponding gas-to-water partition coefficients. Both sets of partition coefficients were analyzed using the modified Abraham solvation parameter model, with the derived equations tightly correlating the experimental gas-to-IL and water-to-IL partition coefficient data to within average standard deviations of 0.088 and 0.111 log units, respectively