145 research outputs found

    Ultrasound sensing using the acousto-optic effect in polymer dispersed liquid crystals

    Get PDF
    Acousto-optic effects are demonstrated in polymer dispersed liquid crystal (PDLC) films, showing promise for applications in ultrasound sensing. The PDLC films are used to image two displacement profiles of an air-coupled flexural transducers resonant modes at 295 kHz and 730 kHz. Results are confirmed using laser vibrometry. The regions on the transducers with the largest displacements are clearly imaged by the PDLC films, with the resolution agreeing well with laser vibrometry scanning. Imaging takes significantly less time than a scanning system (switching time of a few seconds, as compared to 8 hours for laser vibrometry). Heating effects are carefully monitored using thermal imaging, and are found not to be the main cause of PDLC clearing

    Effects of Parvovirus B19 Infection in Renal Transplant Recipients: A Retrospective Review of Three Cases

    Get PDF
    Parvovirus B19 (PVB19) is a DNA virus which causes clinically relevant infection in renal transplant recipients (RTR) leading to significant morbidity. Manifestations include erythropoietin resistant anemia, proteinuria, and glomerulosclerosis in the allograft. Severe infection may require administration of intravenous immunoglobulin, reduction in immunosuppression and transfusions. The major challenge in managing and preventing the infection in RTR involves the act of balancing the decreased level of immunosuppression and the risk of rejection. The objective of this article is to understand the importance of PVB19 infection and its outcome in RTR. We reviewed the medical records of three RTR with confirmed PVB19 infection and recorded patient information including demographics, clinical and laboratory data, management, and outcome. The average time of occurrence of PVB19 infection as transplant was 8.6 weeks and they presented with symptomatic anemia. Elevated creatinine values were noted in two of them. Following treatment, anemia improved and creatinine values returned to baseline. One of them developed an early relapse and had to be treated once again similarly. We emphasize the importance of maintaining a high index of suspicion for PVB19 infection in patients with anemia in the posttransplant phase, especially in patients on higher doses of immunosuppressants. Early and proper treatment can prevent worsening clinical condition and possible effects on the allograft

    Measures on Banach Manifolds and Supersymmetric Quantum Field Theory

    Full text link
    We show how to construct measures on Banach manifolds associated to supersymmetric quantum field theories. These measures are mathematically well-defined objects inspired by the formal path integrals appearing in the physics literature on quantum field theory. We give three concrete examples of our construction. The first example is a family μPs,t\mu_P^{s,t} of measures on a space of functions on the two-torus, parametrized by a polynomial PP (the Wess-Zumino-Landau-Ginzburg model). The second is a family \mu_\cG^{s,t} of measures on a space \cG of maps from ¶1\P^1 to a Lie group (the Wess-Zumino-Novikov-Witten model). Finally we study a family μM,Gs,t\mu_{M,G}^{s,t} of measures on the product of a space of connection s on the trivial principal bundle with structure group GG on a three-dimensional manifold MM with a space of \fg-valued three-forms on M.M. We show that these measures are positive, and that the measures \mu_\cG^{s,t} are Borel probability measures. As an application we show that formulas arising from expectations in the measures \mu_\cG^{s,1} reproduce formulas discovered by Frenkel and Zhu in the theory of vertex operator algebras. We conjecture that a similar computation for the measures μM,SU(2)s,t,\mu_{M,SU(2)}^{s,t}, where MM is a homology three-sphere, will yield the Casson invariant of M.M.Comment: Minor correction

    Role of the Subunits Interactions in the Conformational Transitions in Adult Human Hemoglobin: an Explicit Solvent Molecular Dynamics Study

    Full text link
    Hemoglobin exhibits allosteric structural changes upon ligand binding due to the dynamic interactions between the ligand binding sites, the amino acids residues and some other solutes present under physiological conditions. In the present study, the dynamical and quaternary structural changes occurring in two unligated (deoxy-) T structures, and two fully ligated (oxy-) R, R2 structures of adult human hemoglobin were investigated with molecular dynamics. It is shown that, in the sub-microsecond time scale, there is no marked difference in the global dynamics of the amino acids residues in both the oxy- and the deoxy- forms of the individual structures. In addition, the R, R2 are relatively stable and do not present quaternary conformational changes within the time scale of our simulations while the T structure is dynamically more flexible and exhibited the T\rightarrow R quaternary conformational transition, which is propagated by the relative rotation of the residues at the {\alpha}1{\beta}2 and {\alpha}2{\beta}1 interface.Comment: Reprinted (adapted) with permission from J. Phys. Chem. B DOI:10.1021/jp3022908. Copyright (2012) American Chemical Societ

    Chern-Simons Theory and the Quark-Gluon Plasma

    Full text link
    The generating functional for hard thermal loops in QCD is important in setting up a resummed perturbation theory, so that all terms of a given order in the coupling constant can be consistently taken into account. It is also the functional which leads to a gauge invariant description of Debye screening and plasma waves in the quark-gluon plasma. We have recently shown that this functional is closely related to the eikonal for a Chern-Simons gauge theory. In this paper, this relationship is explored and explained in more detail, along with some generalizations.Comment: 28 pages (4 Feynman diagrams not included, available upon request

    Recipient Criteria Predictive of Graft Failure in Kidney Transplantation

    Get PDF
    Several classifications systems have been developed to predict outcomes of kidney transplantation based on donor variables. This study aims to identify kidney transplant recipient variables that would predict graft outcome irrespective of donor characteristics. All U.S. kidney transplant recipients between October 25,1999 and January 1, 2007 were reviewed. Cox proportional hazards regression was used to model time until graft failure. Death-censored and nondeath-censored graft survival models were generated for recipients of live and deceased donor organs. Recipient age, gender, body mass index (BMI), presence of cardiac risk factors, peripheral vascular disease, pulmonary disease, diabetes, cerebrovascular disease, history of malignancy, hepatitis B core antibody, hepatitis C infection, dialysis status, panel-reactive antibodies (PRA), geographic region, educational level, and prior kidney transplant were evaluated in all kidney transplant recipients. Among the 88,284 adult transplant recipients the following groups had increased risk of graft failure: younger and older recipients, increasing PRA (hazard ratio [HR],1.03-1.06], increasing BMI (HR, 1.04-1.62), previous kidney transplant (HR, 1.17-1.26), dialysis at the time of transplantation (HR, 1.39-1.51), hepatitis C infection (HR, 1.41-1.63), and educational level (HR, 1.05-1.42). Predictive criteria based on recipient characteristics could guide organ allocation, risk stratification, and patient expectations in planning kidney transplantation

    Design and Synthesis of Heterocyclic Cations for Specific DNA Recognition: From AT-Rich to Mixed-Base-Pair DNA Sequences

    Get PDF
    The compounds synthesized in this research were designed with the goal of establishing a new paradigm for mixed-base-pair DNA sequence-specific recognition. The design scheme starts with a cell-permeable heterocyclic cation that binds to AT base pair sites in the DNA minor groove. Modifications were introduced in the original compound to include an Hbond accepting group to specifically recognize the G-NH that projects into the minor groove. Therefore, a series of heterocyclic cations substituted with an azabenzimidazole ring has been designed and synthesized for mixed-base-pair DNA recognition. The most successful compound, 12a, had an azabenzimidazole to recognize G and additional modifications for general minor groove interactions. It binds to the DNA site −AAAGTTT− more strongly than the −AAATTT− site without GC and indicates the design success. Structural modifications of 12a generally weakened binding. The interactions of the new compound with a variety of DNA sequences with and without GC base pairs were evaluated by thermal melting analysis, circular dichroism, fluorescence emission spectroscopy, surface plasmon resonance, and molecular modeling
    • …
    corecore