494 research outputs found

    CompHEP-PYTHIA interface: integrated package for the collision events generation based on exact matrix elements

    Get PDF
    CompHEP, as a partonic event generator, and PYTHIA, as a generator of final states of detectable objects, are interfaced. Thus, integrated tool is proposed for simulation of (almost) arbitrary collision processes at the level of detectable particles. Exact (multiparticle) matrix elements, convolution with structure functions, decays, partons hadronization and (optionally) parton shower evolution are basic stages of calculations. The PEVLIB library of event generators for LHC processes is described.Comment: Standard LaTeX, 4 pages. To appear in the proceedings of the Seventh International Workshop on Advanced Computing and Analysis Technics in Physics Research (ACAT2000, Fermilab, October 16-20, 2000

    Theory of high harmonic generation in relativistic laser interaction with overdense plasma

    Get PDF
    High harmonic generation due to the interaction of a short ultra relativistic laser pulse with overdense plasma is studied analytically and numerically. On the basis of the ultra relativistic similarity theory we show that the high harmonic spectrum is universal, i.e. it does not depend on the interaction details. The spectrum includes the power law part Inn8/3I_n\propto n^{-8/3} for n<8αγmax3n<\sqrt{8\alpha}\gamma_{\max}^3, followed by exponential decay. Here γmax\gamma_{\max} is the largest relativistic γ\gamma-factor of the plasma surface and α\alpha is the second derivative of the surface velocity at this moment. The high harmonic cutoff at γmax3\propto \gamma_{\max}^3 is parametrically larger than the 4γmax24 \gamma_{\max}^2 predicted by the ``oscillating mirror'' model based on the Doppler effect. The cornerstone of our theory is the new physical phenomenon: spikes in the relativistic γ\gamma-factor of the plasma surface. These spikes define the high harmonic spectrum and lead to attosecond pulses in the reflected radiation.Comment: 12 pages, 9 figure

    The Bubble regime of laser-plasma acceleration: monoenergetic electrons and the scalability

    Full text link
    The Bubble regime of electron acceleration in ultra-relativistic laser plasma is considered. It has been shown that the bubble can produce ultra-short dense bunches of electrons with quasi-monoenergetic energy spectra. The first experiment in this regime done at LOA has confirmed the peaked electron spectrum (J. Faure, et al., {\it submitted}, 2004). The generated electron bunch may have density an order of magnitude higher than that of the background plasma. The bubble is able to guide the laser pulse over many Rayleigh lengths, thus no preformed plasma channel is needed for high-energy particle acceleration in the bubble regime. In the present work we discuss a simple analytical model for the bubble fields as well as the scaling laws.Comment: accepted for publication in Plasma Physics and Controlled Fusion, 200

    Spinless photon dark matter from two universal extra dimensions

    Full text link
    We explore the properties of dark matter in theories with two universal extra dimensions, where the lightest Kaluza-Klein state is a spin-0 neutral particle, representing a six-dimensional photon polarized along the extra dimensions. Annihilation of this 'spinless photon' proceeds predominantly through Higgs boson exchange, and is largely independent of other Kaluza-Klein particles. The measured relic abundance sets an upper limit on the spinless photon mass of 500 GeV, which decreases to almost 200 GeV if the Higgs boson is light. The phenomenology of this dark matter candidate is strikingly different from Kaluza-Klein dark matter in theories with one universal extra dimension. Elastic scattering of the spinless photon with quarks is helicity suppressed, making its direct detection challenging, although possible at upcoming experiments. The prospects for indirect detection with gamma rays and antimatter are similar to those of neutralinos. The rates predicted at neutrino telescopes are below the sensitivity of next-generation experiments.Comment: 22 pages. Figure 7 corrected, leading to improved prospects for direct detection. Some clarifying remarks include
    corecore