76 research outputs found

    Angular dependence of the coherent peak position in the polarization bremsstrahlung spectrum of relativistic electrons in polycrystalline targets

    Get PDF
    The spectra of the polarization bremsstrahlung (PB) in the X-ray range induced by 7-MeV electrons in polycrystalline Al, Cu, and Ni polycrystalline films have been measured and the angular dependences of the PB characteristics have been studiedyesBelgorod State Universit

    Magneto-optical studies of the uniform critical state in bulk MgB2

    Full text link
    We present a detailed magneto-optical investigation of the magnetic flux penetration in polycrystalline MgB2 slabs made by direct reaction of B and Mg. Our results unambiguously indicate a uniform, Bean critical state magnetization behavior with almost no electromagnetic granularity. From the measured magnetic flux profiles we were able to extract the temperature dependence of the critical current density Jc(T). The Jc(T) value reaches 1.8x10^5 A/cm2 at 10K and 0.12T, in good agreement with global magnetization measurements

    Behavior of bulk high-temperature superconductors of finite thickness subjected to crossed magnetic fields

    Full text link
    Crossed magnetic field effects on bulk high-temperature superconductors have been studied both experimentally and numerically. The sample geometry investigated involves finite-size effects along both (crossed) magnetic field directions. The experiments were carried out on bulk melt-processed Y-Ba-Cu-O (YBCO) single domains that had been pre-magnetized with the applied field parallel to their shortest direction (i.e. the c-axis) and then subjected to several cycles of the application of a transverse magnetic field parallel to the sample ab plane. The magnetic properties were measured using orthogonal pick-up coils, a Hall probe placed against the sample surface and Magneto-Optical Imaging (MOI). We show that all principal features of the experimental data can be reproduced qualitatively using a two-dimensional finite-element numerical model based on an E-J power law and in which the current density flows perpendicularly to the plane within which the two components of magnetic field are varied. The results of this study suggest that the suppression of the magnetic moment under the action of a transverse field can be predicted successfully by ignoring the existence of flux-free configurations or flux-cutting effects. These investigations show that the observed decay in magnetization results from the intricate modification of current distribution within the sample cross-section. It is also shown that the model does not predict any saturation of the magnetic induction, even after a large number (~ 100) of transverse field cycles. These features are shown to be consistent with the experimental data.Comment: 41 pages, 9 figures, accepted in Phys. Rev. B Changes : 8 references added, a few precisions added, some typos correcte

    Strongly linked current flow in polycrystalline forms of the new superconductor MgB2

    Full text link
    The discovery of superconductivity at 39 K in MgB2[1] raises many issues. One of the central questions is whether this new superconductor resembles a high-temperature-cuprate superconductor or a low-temperature metallic superconductor in terms of its current carrying characteristics in applied magnetic fields. In spite of the very high transition temperatures of the cuprate superconductors, their performance in magnetic fields has several drawbacks[2]. Their large anisotropy restricts high bulk current densities to much less than the full magnetic field-temperature (H-T) space over which superconductivity is found. Further, weak coupling across grain boundaries makes transport current densities in untextured polycrystalline forms low and strongly magnetic field sensitive[3,4]. These studies of MgB2 address both issues. In spite of the multi-phase, untextured, nano-scale sub-divided nature of our samples, supercurrents flow throughout without the strong sensitivity to weak magnetic fields characteristic of Josephson-coupled grains[3]. Magnetization measurements over nearly all of the superconducting H-T plane show good temperature scaling of the flux pinning force, suggestive of a current density determined by flux pinning. At least two length scales are suggested by the magnetization and magneto optical (MO) analysis but the cause of this seems to be phase inhomogeneity, porosity, and minority insulating phase such as MgO rather than by weakly coupled grain boundaries. Our results suggest that polycrystalline ceramics of this new class of superconductor will not be compromised by the weak link problems of the high temperature superconductors, a conclusion with enormous significance for applications if higher temperature analogs of this compound can be discovered

    Influence of vortex-vortex interaction on critical currents across low-angle grain boundaries in YBa2Cu3O7-delta thin films

    Full text link
    Low-angle grain boundaries with misorientation angles theta < 5 degrees in optimally doped thin films of YBCO are investigated by magnetooptical imaging. By using a numerical inversion scheme of Biot-Savart's law the critical current density across the grain boundary can be determined with a spatial resolution of about 5 micrometers. Detailed investigation of the spatially resolved flux density and current density data shows that the current density across the boundary varies with varying local flux density. Combining the corresponding flux and current pattern it is found that there exists a universal dependency of the grain boundary current on the local flux density. A change in the local flux density means a variation in the flux line-flux line distance. With this knowledge a model is developped that explains the flux-current relation by means of magnetic vortex-vortex interaction.Comment: 7 pages, 14 figure

    Thin Film Magnesium Boride Superconductor with Very High Critical Current Density and Enhanced Irreversibility Field

    Full text link
    The discovery of superconductivity at 39 K in magnesium diboride offers the possibility of a new class of low-cost, high-performance superconducting materials for magnets and electronic applications. With twice the critical temperature of Nb_3Sn and four times that of Nb-Ti alloy, MgB_2 has the potential to reach much higher fields and current densities than either of these technological superconductors. A vital prerequisite, strongly linked current flow, has already been demonstrated even at this early stage. One possible drawback is the observation that the field at which superconductivity is destroyed is modest. Further, the field which limits the range of practical applications, the irreversibility field H*(T), is ~7 T at liquid helium temperature (4.2 K), significantly lower than ~10 T for Nb-Ti and ~20 T for Nb_3Sn. Here we show that MgB_2 thin films can exhibit a much steeper temperature dependence of H*(T) than is observed in bulk materials, yielding H*(4.2 K) above 14 T. In addition, very high critical current densities at 4.2 K, 1 MA/cm_2 at 1 T and 10_5 A/cm_2 at 10 T, are possible. These data demonstrate that MgB_2 has credible potential for high-field superconducting applications.Comment: 4 pages pdf, submitted to Nature 3/20/0

    Electronic anisotropy, magnetic field-temperature phase diagram and their dependence on resistivity in c-axis oriented MgB2 thin films

    Full text link
    An important predicted, but so far uncharacterized, property of the new superconductor MgB2 is electronic anisotropy arising from its layered crystal structure. Here we report on three c-axis oriented thin films, showing that the upper critical field anisotropy ratio Hc2par/Hc2perp is 1.8 to 2.0, the ratio increasing with higher resistivity. Measurements of the magnetic field-temperature phase diagram show that flux pinning disappears at H* ~ 0.8Hc2perp(T) in untextured samples. Hc2par(0) is strongly enhanced by alloying to 39 T for the highest resistivity film, more than twice that seen in bulk samples.Comment: 5 pages Acrobat 3.02 pd

    Evidence for two distinct scales of current flow in polycrystalline Sm and Nd iron oxypnictides

    Full text link
    Early studies have found quasi-reversible magnetization curves in polycrystalline bulk rare-earth iron oxypnictides that suggest either wide-spread obstacles to intergranular current or very weak vortex pinning. In the present study of polycrystalline samarium and neodymium rare-earth iron oxypnictide samples made by high pressure synthesis, the hysteretic magnetization is significantly enhanced. Magneto optical imaging and study of the field dependence of the remanent magnetization as a function of particle size both show that global currents over the whole sample do exist but that the intergranular and intragranular current densities have distinctively different temperature dependences and differ in magnitude by about 1000. Assuming that the highest current density loops are restricted to circulation only within grains leads to values of ~5 MA/cm2 at 5 K and self field, while whole-sample current densities, though two orders of magnitude lower are 1000-10000 A/cm2, some two orders of magnitude higher than in random polycrystalline cuprates. We cannot yet be certain whether this large difference in global and intragrain current density is intrinsic to the oxypnictides or due to extrinsic barriers to current flow, because the samples contain significant second phase, some of which wets the grain boundaries and produces evidences of SNS proximity effect in the whole sample critical current.Comment: 28 pages, 14 figure
    corecore