106 research outputs found

    Theory of condensation of indirect excitons in a trap

    Get PDF
    We present theoretical studies of condensation of indirect excitons in a trap. Our model quantifies the effect of screening of the trap potential by indirect excitons on exciton condensation. The theoretical studies are applied to a system of indirect excitons in a GaAs/AlGaAs coupled quantum well structure in a diamond-shaped electrostatic trap where exciton condensation was studied in earlier experiments. The estimated condensation temperature of the indirect excitons in the trap reaches hundreds of milliKelvin

    Simulation of non-stationary processes in centrifugal cascades

    Get PDF
    The model of nonstationary hydraulic and dividing processes in rectangular symmetrical counterstream centrifugal cascades is considered. The calculation technique of centrifugal cascade parameters of transition processes has been developed. The results of numerical computation are presented

    Superfluidity of electron-hole pairs in randomly inhomogeneous bilayer systems

    Full text link
    In bilayer systems electron-hole (e-h) pairs with spatially separated components (i.e., with electrons in one layer and holes in the other) can be condensed to a superfluid state when the temperature is lowered. This article deals with the influence of randomly distributed inhomogeneities on the superfluid properties of such bilayer systems in a strong perpendicular magnetic field. Ionized impurities and roughenings of the conducting layers are shown to decrease the superfluid current density of the e-h pairs. When the interlayer distance is smaller than or close to the magnetic length, the fluctuations of the interlayer distance considerably reduce the superfluid transition temperature.Comment: 13 pages, 3 figure

    Quantum magnetism and counterflow supersolidity of up-down bosonic dipoles

    Full text link
    We study a gas of dipolar Bosons confined in a two-dimensional optical lattice. Dipoles are considered to point freely in both up and down directions perpendicular to the lattice plane. This results in a nearest neighbor repulsive (attractive) interaction for aligned (anti-aligned) dipoles. We find regions of parameters where the ground state of the system exhibits insulating phases with ferromagnetic or anti-ferromagnetic ordering, as well as with rational values of the average magnetization. Evidence for the existence of a novel counterflow supersolid quantum phase is also presented.Comment: 8 pages, 6 figure

    Effect of spatial resolution on the estimates of the coherence length of excitons in quantum wells

    Full text link
    We evaluate the effect of diffraction-limited resolution of the optical system on the estimates of the coherence length of 2D excitons deduced from the interferometric study of the exciton emission. The results are applied for refining our earlier estimates of the coherence length of a cold gas of indirect excitons in coupled quantum wells [S. Yang et al., Phys. Rev. Lett. 97, 187402(2006)]. We show that the apparent coherence length is well approximated by the quadratic sum of the actual exciton coherence length and the diffraction correction given by the conventional Abbe limit divided by 3.14. In practice, accounting for diffraction is necessary only when the coherence length is smaller than about one wavelength. The earlier conclusions regarding the strong enhancement of the exciton coherence length at low temperatures remain intact.Comment: 6 pages, 5 figure

    Bosons in a Lattice: Exciton-Phonon Condensate in Cu2O

    Full text link
    We explore a nonlinear field model to describe the interplay between the ability of excitons to be Bose-condensed and their interaction with other modes of a crystal. We apply our consideration to the long-living para-excitons in Cu2O. Taking into account the exciton-phonon interaction and introducing a coherent phonon part of the moving condensate, we derive the dynamic equations for the exciton-phonon condensate. These equations can support localized solutions, and we discuss the conditions for the moving inhomogeneous condensate to appear in the crystal. We calculate the condensate wave function and energy, and a collective excitation spectrum in the semiclassical approximation; the inside-excitations were found to follow the asymptotic behavior of the macroscopic wave function exactly. The stability conditions of the moving condensate are analyzed by use of Landau arguments, and Landau critical parameters appear in the theory. Finally, we apply our model to describe the recently observed interference and strong nonlinear interaction between two coherent exciton-phonon packets in Cu2O.Comment: 34 pages, LaTeX, four figures (.ps) are incorporated by epsf. Submitted to Phys. Rev.

    Phase IIb randomized trial of adjunct immunotherapy in patients with first-diagnosed tuberculosis, relapsed and multi-drug-resistant (MDR) TB

    Get PDF
    Placebo-controlled, randomized, phase 2b trial was conducted in 34 adults comprising 18 first-diagnosed (52.9%), 6 relapsed (17.6%), and 10 MDR-TB (29.4%) cases to investigate the safety and efficacy of an oral immune adjunct (V5). The immunotherapy (N = 24) and placebo (N = 10) arms received once-daily tablet of V5 or placebo for one month in addition to conventional anti-TB therapy (ATT) administered under directly observed therapy (DOT)

    Interaction potential between dynamic dipoles: polarized excitons in strong magnetic fields

    Full text link
    The interaction potential of a two-dimensional system of excitons with spatially separated electron-hole layers is considered in the strong magnetic field limit. The excitons are assumed to have free dynamics in the xx-yy plane, while being constrained or `polarized' in the zz direction. The model simulates semiconductor double layer systems under strong magnetic field normal to the layers. The {\em residual} interaction between excitons exhibits interesting features, arising from the coupling of the center-of-mass and internal degrees of freedom of the exciton in the magnetic field. This coupling induces a dynamical dipole moment proportional to the center-of-mass magnetic moment of the exciton. We show the explicit dependence of the inter-exciton potential matrix elements, and discuss the underlying physics. The unusual features of the interaction potential would be reflected in the collective response and non-equilibrium properties of such system.Comment: REVTEX - 11 pages - 1 fi

    Stress-strain analysis of pipelines laid in permafrost

    Get PDF
    Increasing reliability of pipelines becomes a real challenge at all stages: design, construction and operation of pipeline systems. It is very important to determine the behaviour of the constructed pipeline under the operational and environmental loads using the design model in accordance with that one adopted in the rules and regulations. This article presents the simulation of pipeline in permafrost. The evaluation of the stress-strain state is given herein and the areas of the stress concentration are detected with the account for different loads occurred during the pipeline operation. Information obtained from the assessment of the stress-strain state of the pipeline allows determining sections in pre-emergency state (even before damages) and take all the necessary measures for eliminating them, thus increasing the pipeline system reliability. It is shown that the most critical pipeline cross-section is observed at the point of transition from one environment to another. The maximum strains decrease the level of the pipeline reliability. The finite element model is presented to determine the pipeline sections in pre-emergency state
    corecore