47 research outputs found

    Protein and lipid MALDI profiles classify breast cancers according to the intrinsic subtype

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) has been demonstrated to be useful for molecular profiling of common solid tumors. Using recently developed MALDI matrices for lipid profiling, we evaluated whether direct tissue MALDI MS analysis on proteins and lipids may classify human breast cancer samples according to the intrinsic subtype.</p> <p>Methods</p> <p>Thirty-four pairs of frozen, resected breast cancer and adjacent normal tissue samples were analyzed using histology-directed, MALDI MS analysis. Sinapinic acid and 2,5-dihydroxybenzoic acid/α-cyano-4-hydroxycinnamic acid were manually deposited on areas of each tissue section enriched in epithelial cells to identify lipid profiles, and mass spectra were acquired using a MALDI-time of flight instrument.</p> <p>Results</p> <p>Protein and lipid profiles distinguish cancer from adjacent normal tissue samples with the median prediction accuracy of 94.1%. Luminal, HER2+, and triple-negative tumors demonstrated different protein and lipid profiles, as evidenced by permutation <it>P </it>values less than 0.01 for 0.632+ bootstrap cross-validated misclassification rates with all classifiers tested. Discriminatory proteins and lipids were useful for classifying tumors according to the intrinsic subtype with median prediction accuracies of 80.0-81.3% in random test sets.</p> <p>Conclusions</p> <p>Protein and lipid profiles accurately distinguish tumor from adjacent normal tissue and classify breast cancers according to the intrinsic subtype.</p

    Ceramides increase the activity of the secretory phospholipase A2 and alter its fatty acid specificity.

    No full text
    Modulation of human recombinant secretory type II phospholipase A(2) activity by ceramide and cholesterol was investigated using model glycerophospholipid substrates composed of phosphatidylethanolamine and phosphatidylserine dispersed in aqueous medium. Enzyme activity was monitored by measurement of released fatty acids using capillary GC-MS. Fatty acids from the sn-2 position of the phospholipids were hydrolysed by the enzyme in proportion to the relative abundance of the phospholipid in the substrate. Addition of increasing amounts of ceramide to the substrate progressively enhanced phospholipase activity. The increased activity was accomplished largely by preferential hydrolysis of polyunsaturated fatty acids, particularly arachidonic acid, derived from phosphatidylethanolamine. The addition of sphingomyelin to the substrate glycerophospholipids inhibited phospholipase activity but its progressive substitution by ceramide, so as to mimic sphingomyelinase activity, counteracted the inhibition. The presence of cholesterol in dispersions of glycerophospholipid-substrate-containing ceramides suppressed activation of the enzyme resulting from the presence of ceramide. The molecular basis of enzyme modulation was investigated by analysis of the phase structure of the dispersed lipid substrate during temperature scans from 46 to 20 degrees C using small-angle synchrotron X-ray diffraction. These studies indicated that intermediate structures created after ceramide-dependent phase separation of hexagonal and lamellar phases represent the most susceptible form of the substrate for enzyme hydrolysis
    corecore