102 research outputs found
RDGB , a PtdIns-PtdOH transfer protein, regulates G-protein-coupled PtdIns(4,5)P2 signalling during Drosophila phototransduction
Many membrane receptors activate phospholipase C (PLC) during signalling, triggering changes in the levels of several plasma membrane lipids including phosphatidylinositol (PtdIns), phosphatidic acid (PtdOH) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]. It is widely believed that exchange of lipids between the plasma membrane and endoplasmic reticulum (ER) is required to restore lipid homeostasis during PLC signalling, yet the mechanism remains unresolved. RDGBα (hereafter RDGB) is a multi-domain protein with a PtdIns transfer protein (PITP) domain (RDGB-PITPd). We find that, in vitro, the RDGB-PITPd binds and transfers both PtdOH and PtdIns. In Drosophila photoreceptors, which experience high rates of PLC activity, RDGB function is essential for phototransduction. We show that binding of PtdIns to RDGB-PITPd is essential for normal phototransduction; however, this property is insufficient to explain the in vivo function because another Drosophila PITP (encoded by vib) that also binds PtdIns cannot rescue the phenotypes of RDGB deletion. In RDGB mutants, PtdIns(4,5)P2 resynthesis at the plasma membrane following PLC activation is delayed and PtdOH levels elevate. Thus RDGB couples the turnover of both PtdIns and PtdOH, key lipid intermediates during G-protein-coupled PtdIns(4,5)P2 turnover
Morphological and molecular characterization of Curvularia and related species associated with leaf spot disease of rice in Peninsular Malaysia
Curvularia species are important phytopathogens reported worldwide. They are closely related; consist of major destructive pathogens mainly for grasses and cereal plants including rice (Oryza sativa). A leaf spot symptom of rice is one of the common symptoms found in the rice field and caused reduction of rice yield. However, there are no reports on Curvularia species associated with rice leaves showing spot symptoms. The objectives are to isolate and characterize Curvularia and related species from leaf spot of rice by using morphological and molecular characterization and to determine the phylogenetic relationship between the isolated fungi. Fungal isolation was done from diseased rice leaves showing leaf spot symptoms collected throughout Peninsular Malaysia. Thirty-three isolates were recovered and identified based on their morphological characteristics such as conidia morphology, colony appearance, pigmentation and growth rate for species delimitation. Internal transcribed spacer (ITS) region was amplified to confirm the species identification. The 33 isolates were identified as Bipolaris sorokiniana (10 isolates), Curvularia hawaiiensis (8 isolates), C. geniculata (6 isolates), C. eragrostidis (6 isolates), C. aeria (2 isolates) and C. lunata (1 isolate). A phylogenetic tree was constructed based on ITS sequences using neighbour-joining method. The tree grouped members of Curvularia and Bipolaris into different clades. The phylogenetic tree indicated that the presence of two groups of fungi species; highly virulent and mild pathogens. In conclusion, Curvularia species and Bipolaris sorokiniana were present in rice field in Malaysia and associated with leaf spot of rice
A first genome assembly of the barley fungal pathogen Pyrenophora teres f. teres
Background: Pyrenophora teres f. teres is a necrotrophic fungal pathogen and the cause of one of barley’s most important diseases, net form of net blotch. Here we report the first genome assembly for this species based solely on short Solexa sequencing reads of isolate 0-1. The assembly was validated by comparison to BAC sequences, ESTs, orthologous genes and by PCR, and complemented by cytogenetic karyotyping and the first genome-wide genetic map for P. teres f. teres. Results: The total assembly was 41.95 Mbp and contains 11,799 gene models of 50 amino acids or more. Comparison against two sequenced BACs showed that complex regions with a high GC content assembled effectively. Electrophoretic karyotyping showed distinct chromosomal polymorphisms between isolates 0-1 and 15A, and cytological karyotyping confirmed the presence of at least nine chromosomes. The genetic map spans 2477.7 cM and is composed of 243 markers in 25 linkage groups, and incorporates SSR markers developed from the assembly. Among predicted genes, non-ribosomal peptide synthetases and efflux pumps in particular appear to have undergone a P. teres f. teres-specific expansion of non-orthologous gene families. Conclusions: This study demonstrates that paired-end Solexa sequencing can successfully capture coding regions of a filamentous fungal genome. The assembly contains a plethora of predicted genes that have been implicated in a necrotrophic lifestyle and pathogenicity and presents a significant resource for examining the bases for P. teres f. teres pathogenicity
Certification and the American Phytopathological Society
The profession of plant pathology strives to improve the health and safety of the public through improved plant health systems. This includes the benefits afforded by well-managed urban landscapes and abundant food and fiber. However, the proud glow of the profession of plant pathology has dimmed over the past 20 years to the point that some members of the American Phytopathological Society (APS), the principal professional society of plant pathologists in the United States, are not sure what a plant pathologist should know or what a plant pathologist is responsible for (Phytopathology News 30:162). Without a unified, positive direction for the profession of plant pathology, we will see continued dissolution of academic plant pathology departments to departments such as microbiology, ecology, and plant science. We lament that the public doesn’t understand who we are, and we seek ways to change that public perception. Plant pathology can be divided into two major components: (i) the science of plant pathology, and (ii) the profession of plant pathology. The basic research discoveries that lead to the development of the scientific principles of plant pathology provide the foundation for the profession. The profession of plant pathology is the application of those scientific principles in production agriculture, forestry, and urban settings to benefit the public by safely reducing the negative impact of plant diseases
- …