2,948 research outputs found
A non-singular black hole model as a possible end-product of gravitational collapse
In this paper we present a non-singular black hole model as a possible
end-product of gravitational collapse. The depicted spacetime which is type
[II,(II)], by Petrov classification, is an exact solution of the Einstein
equations and contains two horizons. The equation of state in the radial
direction, is a well-behaved function of the density and smoothly reproduces
vacuum-like behavior near r=0 while tending to a polytrope at larger r, low
density, values. The final equilibrium configuration comprises of a de
Sitter-like inner core surrounded by a family of 2-surfaces of matter fields
with variable equation of state. The fields are all concentrated in the
vicinity of the radial center r=0. The solution depicts a spacetime that is
asymptotically Schwarzschild at large r, while it becomes de Sitter-like for
vanishing r. Possible physical interpretations of the macro-state of the black
hole interior in the model are offered. We find that the possible state admits
two equally viable interpretations, namely either a quintessential intermediary
region or a phase transition in which a two-fluid system is in both dynamic and
thermodynamic equilibrium. We estimate the ratio of pure matter present to the
total energy and in both (interpretations) cases find it to be virtually the
same, being 0.83. Finally, the well-behaved dependence of the density and
pressure on the radial coordinate provides some insight on dealing with the
information loss paradox.Comment: 12 Pages, 1 figure. Accepted for publication in Phys. Rev.
Mathematical Modelling of Dynamical Processes Under Interval Experimental Data
A brief discussion on a new methodology for solving mathematical problems involving interval input data and for scientific computing with result verification is presented. Some examples for the impact of this methodology on particular mathematical modelling situations are given. A brief report on a newly developed program system MODYNA, which is designed according to the new methodology, is presented
On the Algebraic Properties of Convex Bodies
AMS subject classification: 52A01, 13C99.The algebraic properties of the convex bodies are studied. A theorem of H. Rådström
for embedding of convex bodies in a normed vector space is generalized by using a
natural extension of the multiplication by scalar.This work was partially supported by the Bulgarian National Science Fund under grant No. MM-521/95
Synthesis of Quantum Logic Circuits
We discuss efficient quantum logic circuits which perform two tasks: (i)
implementing generic quantum computations and (ii) initializing quantum
registers. In contrast to conventional computing, the latter task is nontrivial
because the state-space of an n-qubit register is not finite and contains
exponential superpositions of classical bit strings. Our proposed circuits are
asymptotically optimal for respective tasks and improve published results by at
least a factor of two.
The circuits for generic quantum computation constructed by our algorithms
are the most efficient known today in terms of the number of expensive gates
(quantum controlled-NOTs). They are based on an analogue of the Shannon
decomposition of Boolean functions and a new circuit block, quantum
multiplexor, that generalizes several known constructions. A theoretical lower
bound implies that our circuits cannot be improved by more than a factor of
two. We additionally show how to accommodate the severe architectural
limitation of using only nearest-neighbor gates that is representative of
current implementation technologies. This increases the number of gates by
almost an order of magnitude, but preserves the asymptotic optimality of gate
counts.Comment: 18 pages; v5 fixes minor bugs; v4 is a complete rewrite of v3, with
6x more content, a theory of quantum multiplexors and Quantum Shannon
Decomposition. A key result on generic circuit synthesis has been improved to
~23/48*4^n CNOTs for n qubit
Spectroscopic and physical parameters of Galactic O-type stars. II. Observational constraints on projected rotational and extra broadening velocities as a function of fundamental parameters and stellar evolution
Rotation is of key importance for the evolution of hot massive stars,
however, the rotational velocities of these stars are difficult to determine.
Based on our own data for 31 Galactic O stars and incorporating similar data
for 86 OB supergiants from the literature, we aim at investigating the
properties of rotational and extra line-broadening as a function of stellar
parameters and at testing model predictions about the evolution of stellar
rotation. Fundamental stellar parameters were determined by means of the code
FASTWIND. Projected rotational and extra broadening velocities originate from a
combined Ft + GOF method. Model calculations published previously were used to
estimate the initial evolutionary masses. The sample O stars with Minit > 50
Msun rotate with less that 26% of their break-up velocity, and they also lack
objects with v sin i 35 Msun on the
hotter side of the bi-stability jump, the observed and predicted rotational
rates agree quite well; for those on the cooler side of the jump, the measured
velocities are systematically higher than the predicted ones. In general, the
derived extra broadening velocities decrease toward cooler Teff, whilst for
later evolutionary phases they appear, at the same v sin i, higher for
high-mass stars than for low-mass ones. None of the sample stars shows extra
broadening velocities higher than 110 km/s. For the majority of the more
massive stars, extra broadening either dominates or is in strong competition
with rotation. Conclusions: For OB stars of solar metallicity, extra broadening
is important and has to be accounted for in the analysis. When appearing at or
close to the zero-age main sequence, most of the single and more massive stars
rotate slower than previously thought. Model predictions for the evolution of
rotation in hot massive stars may need to be updated.Comment: 15 pages, 10 figures, accepted for publication in A &
Constant-degree graph expansions that preserve the treewidth
Many hard algorithmic problems dealing with graphs, circuits, formulas and
constraints admit polynomial-time upper bounds if the underlying graph has
small treewidth. The same problems often encourage reducing the maximal degree
of vertices to simplify theoretical arguments or address practical concerns.
Such degree reduction can be performed through a sequence of splittings of
vertices, resulting in an _expansion_ of the original graph. We observe that
the treewidth of a graph may increase dramatically if the splittings are not
performed carefully. In this context we address the following natural question:
is it possible to reduce the maximum degree to a constant without substantially
increasing the treewidth?
Our work answers the above question affirmatively. We prove that any simple
undirected graph G=(V, E) admits an expansion G'=(V', E') with the maximum
degree <= 3 and treewidth(G') <= treewidth(G)+1. Furthermore, such an expansion
will have no more than 2|E|+|V| vertices and 3|E| edges; it can be computed
efficiently from a tree-decomposition of G. We also construct a family of
examples for which the increase by 1 in treewidth cannot be avoided.Comment: 12 pages, 6 figures, the main result used by quant-ph/051107
Adsorption Way of the Loss of Moon's Atmosphere
Theory on gas adsorption by lunar surface to explain loss of lunar atmospher
Modeling and Simulation of Janus-like Nanoparticles Formation by Solid-Gas Exothermic Reactions
Theoretical model for the simulation of synthesis of Janus-like particles (JP) consisting two different phases using the Carbon Combustion Synthesis of Oxides (CCSO) is presented. The model includes the variation of sample initial porosity, carbon concentration and oxygen flow rate used to predict the formation of JP features. The two temperature (2T) combustion model of chemically active submicron-dispersed mixture of two phases including ferroelectric and ferromagnetic was implemented and assessed by using the experimentally estimated activation energy of 112±3.3 kJ/mol and combustion temperature. The experimental values allowed to account the thermal and concentration expansion effect along with the dispersion by the slip-jump simulation for high Knudsen numbers. The model predicted that the smaller initial porosity of the combustion media creates higher formation rate of Janus-like particles. The simulation of slippage and jumps of the gas temperature allowed the scale-bridging between macro- and micro- structures
Efficient Multi-stage Inference on Tabular Data
Many ML applications and products train on medium amounts of input data but
get bottlenecked in real-time inference. When implementing ML systems,
conventional wisdom favors segregating ML code into services queried by product
code via Remote Procedure Call (RPC) APIs. This approach clarifies the overall
software architecture and simplifies product code by abstracting away ML
internals. However, the separation adds network latency and entails additional
CPU overhead. Hence, we simplify inference algorithms and embed them into the
product code to reduce network communication. For public datasets and a
high-performance real-time platform that deals with tabular data, we show that
over half of the inputs are often amenable to such optimization, while the
remainder can be handled by the original model. By applying our optimization
with AutoML to both training and inference, we reduce inference latency by
1.3x, CPU resources by 30%, and network communication between application
front-end and ML back-end by about 50% for a commercial end-to-end ML platform
that serves millions of real-time decisions per second
- …