11 research outputs found

    Equilibrium properties of a Josephson junction ladder with screening effects

    Full text link
    In this paper we calculate the ground state phase diagram of a Josephson Junction ladder when screening field effects are taken into account. We study the ground state configuration as a function of the external field, the penetration depth and the anisotropy of the ladder, using different approximations to the calculation of the induced fields. A series of tongues, characterized by the vortex density ω\omega, is obtained. The vortex density of the ground state, as a function of the external field, is a Devil's staircase, with a plateau for every rational value of ω\omega. The width of each of these steps depends strongly on the approximation made when calculating the inductance effect: if the self-inductance matrix is considered, the ω=0\omega=0 phase tends to occupy all the diagram as the penetration depth decreases. If, instead, the whole inductance matrix is considered, the width of any step tends to a non-zero value in the limit of very low penetration depth. We have also analyzed the stability of some simple metastable phases: screening fields are shown to enlarge their stability range.Comment: 16 pp, RevTex. Figures available upon request at [email protected] To be published in Physical Review B (01-Dec-96

    Electron-Assisted Hopping in Two Dimensions

    Full text link
    We have studied the non-ohmic effects in the conductivity of a two-dimensional system which undergoes the crossover from weak to strong localization with decreasing electron concentration. When the electrons are removed from equilibrium with phonons, the hopping conductivity depends only on the electron temperature. This indicates that the hopping transport in a system with a large localization length is assisted by electron-electron interactions rather than by the phonons.Comment: 5 pages, 4 figure
    corecore