371 research outputs found

    Magnetic order in lightly doped cuprates: Coherent vs. incoherent hole quasiparticles and non-magnetic impurities

    Full text link
    We investigate magnetic properties of lightly doped antiferromagnetic Mott insulators in the presence of non-magnetic impurities. Within the framework of the t-J model we calculate the doping dependence of the antiferromagnetic order parameter using the self-consistent diagrammatic techniques. We show that in the presence of non-magnetic impurities the antiferromagnetic order is more robust against hole doping in comparison with the impurity-free host, implying that magnetic order can re-appear upon Zn doping into lightly hole-doped cuprates. We argue that this is primarily due to the loss of coherence and reduced mobility of the hole quasiparticles caused by impurity scattering. These results are consistent with experimental data on Zn-doped LaSrCuO.Comment: 11 pages, 7 figs, (v2) final version as publishe

    Cu Nuclear Quadrupole Resonance Study of Site-Disorder and Chemical Pressure Effects on Y(Ba1-xSrx)2Cu4O8

    Full text link
    We report a zero-field Cu nuclear quadrupole resonance (NQR) study on the effects of nonmagnetic Sr substitution for high-Tc superconductors, Y(Ba1-xSrx)2Cu4O8 (Tc=82-80 K for x=0-0.4), using a spin-echo technique. The site-disordering and chemical pressure effects associated with doping Sr were observed in the broadened, shifted Cu NQR spectra. Nevertheless, the site disorder did not significantly affect the homogeneity of Cu electron spin dynamics, in contrast to the in-plane impurity. The peak shift of Cu NQR spectrum due to Sr was different between the chain- and the plane-Cu sites, more remarkably than those under a hydrostatic physical pressure, suggesting anisotropic or nonuniform local structural strains. The small decrease of Tc due to Sr can be traced back to either a cancellation effect on Tc between the disorder and the pressure, or an anisotropic or nonuniform chemical pressure effect on Tc.Comment: 4 pages, 5 figure

    Muon-spin-relaxation and magnetic-susceptibility studies of effects of the magnetic impurity Ni on the Cu-spin dynamics and superconductivity in La_2-x_Sr_x_Cu_1-y_Ni_y_O_4_ with x = 0.13

    Get PDF
    Effects of the magnetic impurity Ni on the Cu-spin dynamics and superconductivity have been studied in La_2-x_Sr_x_Cu_1-y_Ni_y_O_4_ with x = 0.13 changing y finely up to 0.10. Compared with the case of the nonmagnetic impurity Zn, it has been found from the muon-spin-relaxation measurements that a large amount of Ni is required to stabilize a magnetic order of Cu spins. However, the evolution toward the stabilization of the magnetic order with increasing impurity concentration is qualitatively similar to each other. The area of the non-superconducting and slowly fluctuating or static region of Cu spins around Ni has been found to be smaller than that around Zn, suggesting that the pinning of rather long-ranged dynamical spin correlation such as the so-called dynamical stripe by Ni is weaker than that by Zn. This may be the reason why Zn destroys the superconductivity in the hole-doped high-T_c_ cuprates more markedly than Ni.Comment: 4 pages, 4 figures, accepted for publication in Phys. Rev.

    Re-appearance of antiferromagnetic ordering with Zn and Ni substitution in La_{2-x}Sr_xCuO_4

    Full text link
    The effects of nonmagnetic Zn and magnetic Ni substitution for Cu site on magnetism are studied by measurements of uniform magnetic susceptibility for lightly doped La_{2-x}Sr_xCu_{1-z}M_zO_4 (M=Zn or Ni) polycrystalline samples. For the parent x=0, Zn doping suppresses the N\'{e}el temperature T_N whereas Ni doping hardly changes T_N up to z=0.3. For the lightly doped samples with T_N~0, the Ni doping recovers T_N. For the superconducting samples, the Ni doping induces the superconductivity-to-antiferromagnetic transition (or crossover). All the heavily Ni doped samples indicate a spin glass behavior at \~15 K.Comment: 2 pages including 3 figures, to be published in Physica C (LT23, Hiroshima 2002

    Toward a Unified Magnetic Phase Diagram of the Cuprate Superconductors

    Full text link
    We propose a unified magnetic phase diagram of cuprate superconductors. A new feature of this phase diagram is a broad intermediate doping region of quantum-critical, z=1z=1, behavior, characterized by temperature independent T1T/T2GT_1T/T_{\rm 2G} and linear T1TT_1T, where the spin waves are not completely absorbed by the electron-hole continuum. The spin gap in the moderately doped materials is related to the suppression of the low-energy spectral weight in the quantum disordered, z=1z=1, regime. The crossover to the z=2z=2 regime, where T_1T/T_{\rm 2G}^2 \simeq \mbox{const}, occurs only in the fully doped materials.Comment: 14 pages, REVTeX v2.1, PostScript file for 3 figures attached, UIUC-P-93-06-04

    Theory of Electron Differentiation, Flat Dispersion and Pseudogap Phenomena

    Full text link
    Aspects of electron critical differentiation are clarified in the proximity of the Mott insulator. The flattening of the quasiparticle dispersion appears around momenta (π,0)(\pi,0) and (0,π)(0,\pi) on square lattices and determines the criticality of the metal-insulator transition with the suppressed coherence in that momentum region of quasiparticles. Such coherence suppression at the same time causes an instability to the superconducting state if a proper incoherent process is retained. The d-wave pairing interaction is generated from such retained processes without disturbance from the coherent single-particle excitations. Pseudogap phenomena widely observed in the underdoped cuprates are then naturally understood from the mode-mode coupling of d-wave superconducting(dSC) fluctuations with antiferromagnetic ones. When we assume the existence of a strong d-wave pairing force repulsively competing with antiferromagnetic(AFM) fluctuations under the formation of flat and damped single-particle dispersion, we reproduce basic properties of the pseudogap seen in the magnetic resonance, neutron scattering, angle resolved photoemission and tunneling measurements in the cuprates.Comment: 9 pages including 2 figures, to appear in J. Phys. Chem. Solid

    On the Critical Behavior of the Uniform Susceptibility of a Fermi Liquid Near an Antiferromagnetic Transition with Dynamic Exponent z=2 z = 2

    Full text link
    We compute the leading behavior of the uniform magnetic susceptibility, χ\chi, of a Fermi liquid near an antiferromagnetic transition with dynamic exponent z=2z=2. Our calculation clarifies the role of triangular ``anomaly'' graphs in the theory and justifies the effective action used in previous work \cite{Hertz}. We find that at the z=2z=2 critical point of a two dimensional material, limq0χ(q,0)=χ0DTlim_{q \rightarrow 0} \chi (q,0) = \chi_0 - D T with χ0\chi_0 and DD nonuniversal constants. For reasonable band structures we find that in a weak coupling approximation DD is small and positive. Our result suggests that the behavior observed in the quantum critical regime of underdoped high-TcT_c superconductors are difficult to explain in a z=2z=2 theory.Comment: 12 pages, uuencoded Postscript fil

    Quantum Disordered Regime and Spin Gap in the Cuprate Superconductors

    Full text link
    We discuss the crossover from the quantum critical, z ⁣= ⁣1z\!=\!1, to the quantum disordered regime in high-Tc_c materials in relation to the experimental data on the nuclear relaxation, bulk susceptibility, and inelastic neutron scattering. In our scenario, the spin excitations develop a gap Δ ⁣ ⁣1/ξ\Delta\!\sim\!1/\xi well above Tc_c, which is supplemented by the quasiparticle gap below Tc_c. The above experiments yield consistent estimates for the value of the spin gap, which increases as the correlation length decreases.Comment: 14 pages, REVTeX v3.0, PostScript file for 3 figures is attached, UIUC-P-93-07-06

    Ectopic expression of GmNHX3 and GmNHX1, encoding two Glycine max Na+/H+ vacuolar antiporters, improves water deficit tolerance in Arabidopsis thaliana

    Get PDF
    The importance of Na+/H+ antiporters in salt tolerance in plants has been demonstrated in many studies, but much less is known about their protective role during drought stress. To study their possible contribution to water deficit tolerance, two closely related soybean Na+/H+ antiporters belonging to the intracellular NHX exchanger protein family, GmNHX3 and GmNHX1, were evaluated in transgenic Arabidopsis thaliana. A. thaliana plants ectopically expressing GmNHX3 or GmNHX1 displayed a more drought-tolerant phenotype compared to wild-type plants, which was accompanied by an increase in relative water content and chlorophyll content during stress conditions. Both GmHNX1 and GmHNX3 transgenic lines accumulated higher amounts of Na+ and K+ cations, showed increased antioxidant enzyme activities and less membrane damage due to lipid peroxidation under water deficit, as compared to non-transformed plants. Furthermore, plants expressing GmNHX3 showed an increased sensitivity to abscisic acid as deduced from stomatal closure and seed germination inhibition studies. Finally, a significant up-regulation of abiotic stress-related genes was observed in both transgenic lines compared to wild-type plants in response to abscisic acid and mannitol treatments. These results demonstrate that GmNHX3 and GmNHX1 antiporters confer protection during drought stress in A. thaliana and hence are potential genetic targets to improve drought tolerance in soybean and other crops.Fil: Pardo, Esteban Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Ciencia y Tecnología "Dr. César Milstein". Fundación Pablo Cassará. Instituto de Ciencia y Tecnología "Dr. César Milstein"; ArgentinaFil: Toum, Laila. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Ciencia y Tecnología "Dr. César Milstein". Fundación Pablo Cassará. Instituto de Ciencia y Tecnología "Dr. César Milstein"; ArgentinaFil: Pérez Borroto, Lucía Sandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Ciencia y Tecnología "Dr. César Milstein". Fundación Pablo Cassará. Instituto de Ciencia y Tecnología "Dr. César Milstein"; ArgentinaFil: Fleitas, L.. Universidad de la República; UruguayFil: Gallino, J. P.. Universidad de la República; UruguayFil: Machi, S.. Universidad de la República; UruguayFil: Vojnov, Adrián Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Ciencia y Tecnología "Dr. César Milstein". Fundación Pablo Cassará. Instituto de Ciencia y Tecnología "Dr. César Milstein"; ArgentinaFil: Castagnaro, Atilio Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Ciencia y Tecnología "Dr. César Milstein". Fundación Pablo Cassará. Instituto de Ciencia y Tecnología "Dr. César Milstein"; ArgentinaFil: Welin, Björn. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Ciencia y Tecnología "Dr. César Milstein". Fundación Pablo Cassará. Instituto de Ciencia y Tecnología "Dr. César Milstein"; Argentin

    Spin Gaps and Bilayer Coupling in YBa2_2Cu3_3O7δ_{7-\delta} and YBa2_2Cu4_4O8_8

    Full text link
    We investigate the relevance to the physics of underdoped YBa2_2Cu3_3O6+x_{\rm 6+x} and YBa2_2Cu4_4O8_8 of the quantum critical point which occurs in a model of two antiferromagnetically coupled planes of antiferromagnetically correlated spins. We use a Schwinger boson mean field theory and a scaling analysis to obtain the phase diagram of the model and the temperature and frequency dependence of various susceptibilities and relaxation rates. We distinguish between a low ω,T\omega ,T coupled-planes regime in which the optic spin excitations are frozen out and a high ω,T\omega ,T decoupled-planes regime in which the two planes fluctuate independently. In the coupled-planes regime the yttrium nuclear relaxation rate at low temperatures is larger relative to the copper and oxygen rates than would be naively expected in a model of uncorrelated planes. Available data suggest that in YBa2_2Cu4_4O8_8 the crossover from the coupled to the decoupled planes regime occurs at T700KT 700K or T200KT \sim 200K. The predicted correlation length is of order 6 lattice constants at T=200KT=200K. Experimental data related to the antiferromagnetic susceptibility of YBa2_2Cu4_4O8_8 may be made consistent with the theory, but available data for the uniform susceptibility are inconsistent with the theory.Comment: RevTex 3.
    corecore