6,153 research outputs found
A Discrete Version of the Inverse Scattering Problem and the J-matrix Method
The problem of the Hamiltonian matrix in the oscillator and Laguerre basis
construction from the S-matrix is treated in the context of the algebraic
analogue of the Marchenko method.Comment: 11 pages. The Laguerre basis case is adde
One-dimensional conduction in Charge-Density Wave nanowires
We report a systematic study of the transport properties of coupled
one-dimensional metallic chains as a function of the number of parallel chains.
When the number of parallel chains is less than 2000, the transport properties
show power-law behavior on temperature and voltage, characteristic for
one-dimensional systems.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let
Deformation of generic submanifolds in a complex manifold
This paper shows that an arbitrary generic submanifold in a complex manifold
can be deformed into a 1-parameter family of generic submanifolds satisfying
strong nondegeneracy conditions. The proofs use a careful analysis of the jet
spaces of embeddings satisfying certain nondegeneracy properties, and also make
use of the Thom transversality theorem, as well as the stratification of
real-algebraic sets. Optimal results on the order of nondegeneracy are given.Comment: 24 page
Quasiparticle states of the Hubbard model near the Fermi level
The spectra of the t-U and t-t'-U Hubbard models are investigated in the
one-loop approximation for different values of the electron filling. It is
shown that the four-band structure which is inherent in the case of
half-filling and low temperatures persists also for some excess or deficiency
of electrons. Besides, with some departure from half-filling an additional
narrow band of quasiparticle states arises near the Fermi level. The dispersion
of the band, its bandwidth and the variation with filling are close to those of
the spin-polaron band of the t-J model. For moderate doping spectral
intensities in the new band and in one of the inner bands of the four-band
structure decrease as the Fermi level is approached which leads to the
appearance of a pseudogap in the spectrum.Comment: 8 pages, 7 figure
Nonlinear resonance in a three-terminal carbon nanotube resonator
The RF-response of a three-terminal carbon nanotube resonator coupled to
RF-transmission lines is studied by means of perturbation theory and direct
numerical integration. We find three distinct oscillatory regimes, including
one regime capable of exhibiting very large hysteresis loops in the frequency
response. Considering a purely capacitive transduction, we derive a set of
algebraic equations which can be used to find the output power (S-parameters)
for a device connected to transmission lines with characteristic impedance
.Comment: 16 pages, 8 figure
Measurement of Stochastic Entropy Production
Using fluorescence spectroscopy we directly measure entropy production of a
single two-level system realized experimentally as an optically driven defect
center in diamond. We exploit a recent suggestion to define entropy on the
level of a single stochastic trajectory (Seifert, Phys. Rev. Lett. {\bf 95},
040602 (2005)). Entropy production can then be split into one of the system
itself and one of the surrounding medium. We demonstrate that the total entropy
production obeys various exact relations for finite time trajectories.Comment: Phys. Rev. Lett., in pres
- …