879 research outputs found

    Autonomous control of underground mining vehicles using reactive navigation

    Get PDF
    Describes how many of the navigation techniques developed by the robotics research community over the last decade may be applied to a class of underground mining vehicles (LHDs and haul trucks). We review the current state-of-the-art in this area and conclude that there are essentially two basic methods of navigation applicable. We describe an implementation of a reactive navigation system on a 30 tonne LHD which has achieved full-speed operation at a production mine

    On hydrogen bond correlations at high pressures

    Full text link
    In situ high pressure neutron diffraction measured lengths of O H and H O pairs in hydrogen bonds in substances are shown to follow the correlation between them established from 0.1 MPa data on different chemical compounds. In particular, the conclusion by Nelmes et al that their high pressure data on ice VIII differ from it is not supported. For compounds in which the O H stretching frequencies red shift under pressure, it is shown that wherever structural data is available, they follow the stretching frequency versus H O (or O O) distance correlation. For compounds displaying blue shifts with pressure an analogy appears to exist with improper hydrogen bonds.Comment: 12 pages,4 figure

    High pressure investigations on hydrous Magnesium Silicate-Phase A using first principles calculations, H---H repulsion and O-H bond compression

    Get PDF
    We have carried out first principles structural relaxation calculations on the hydrous magnesium silicate Phase A (Mg7Si2O8(OH)6) under high pressures. Our results show that phase A does not undergo any phase transition upto ~ 45 GPa. We find that nonbonded H---H distance reaches a limiting value of 1.85 Ã… at about 45 GPa. The H---H repulsive strain releasing mechanism in Phase A is found to be dramatically different from the hydrogen bond bending one that was proposed by Hofmeister et al1 for Phase B. It is based on the reduction of one of the O-H bond distances with compression

    Structure determination of Ls-threonine by neutron diffraction

    Get PDF
    The structure of the aminoacid, Ls-threonine [NH 3 + CH(CHOHCH3)COO-], space groupP212121,a=13.630(5),b=7.753(1),c=5.162(2) Ã… ,z=4, has been determined from neutron diffraction data using direct methods. The intensities of 1148 neutron Bragg reflections were measured from a single crystal. The structural parameters were refined by the method of least squares using anisotropic temperature factors. The finalR(F 2) is 0.068. The structure was also refined from the x-ray data of Shoemakeret al (1950J. Am. Chem. Soc. 72 2328); there is good agreement between the two sets of heavy atom parameters. The parameters of hydrogen atoms are of course more precisely determined in our neutron study. The molecular conformation and the hydrogen bonding scheme are discussed. Weighted average values of bond distances and angles from 14 aminoacid structures with ionized carboxylic groups studied by neutron diffraction at Brookheven and Trombay are also presented

    Cavity radius estimation for contained peaceful nuclear explosions-an analytic approach

    Get PDF
    An analytical method based on Penny-Taylor model has been modified and applied for the estimation of the final cavity radius for contained peaceful nuclear explosions. The calculated cavity radii for some nuclear explosions in granite, alluvium and sandstone rocks are in good agreement with measured values

    Subjective ratings of fear are associated with frontal late positive potential asymmetry, but not with early brain activity over the occipital and centro-parietal cortices

    Get PDF
    The human frontal cortex is asymmetrically involved in motivational and affective processing. Several studies have shown that the left-frontal hemisphere is related to positive and approach-related affect, whereas the right-frontal hemisphere is related to negative and withdrawal-related affect. The present study aimed to investigate whether evolutionarily threatening stimuli modulate asymmetrical frontal activity. We examined hemispheric differences in frontal late positive potentials (f-LPP asymmetry) and frontal alpha power activation (frontal alpha asymmetry, FAA) in response to images depicting snakes, spiders, butterflies, and birds. Results showed that the late component of f-LPP asymmetry, but not FAA, was modulated by the category of stimuli. Specifically, threatening stimuli (snakes and spiders) evoked a relatively large late f-LPP over the right-frontal hemisphere than non-threatening stimuli (birds and butterflies). Moreover, this relatively great right-frontal activity was positively associated with the subjective ratings of fear. Importantly, the subjective ratings of fear were not associated with early brain activity over the occipital or centro-parietal cortices. These results suggest that late f-LPP asymmetry may reflect higher order affective processes, specifically the subjective appraisal of threatening stimuli and the subjective experience of fear, that are independent of the fast and automatic processing of evolutionarily significant and affectively arousing stimuli

    Pressure effects on single wall carbon nanotube bundles

    Get PDF
    We report high pressure Raman studies on single wall carbon nanotube bundles under hydrostatic conditions using two different pressure transmitting media, alcohol mixture and pure water. The radial and tangential modes show a blue shift when SWNT bundle is immersed in the liquids at ambient pressures. The pressure dependence of the radial modes is the same in both liquids. However, the pressure derivatives dω/dP of the tangential modes are slightly higher for the water medium. Raman results are compared with studies under non-hydrostatic conditions and with recent high-pressure X-ray studies. It is seen that the mode frequencies of the recovered sample after pressure cycling from 26 GPa are downshifted by ~7-10 cm−1 as compared to the starting sample

    Pressure-induced phase transformation and structural resilience of single-wall carbon nanotube bundles

    Get PDF
    We report here an in situ X-ray diffraction investigation of the structural changes in carbon single-wall nanotube bundles under quasihydrostatic pressures up to 13 GPa. In contrast with a recent study [Phys. Rev. Lett. 85, 1887 (2000)] our results show that the triangular lattice of the carbon nanotube bundles continues to persist up to ~10 GPa. The lattice is seen to relax just before the phase transformation that is observed at ~10 GPa. Further, our results display the reversibility of the two-dimensional lattice symmetry even after compression up to 13 GPa well beyond the 5 GPa value observed recently. These experimental results explicitly validate the predicted remarkable mechanical resilience of the nanotubes

    High pressure investigations on Hydrous Magnesium Silicate-Phase A using first principles calculations, H---H repulsion and O-H bond compression

    Get PDF
    We have carried out first principles structural relaxation calculations on the hydrous magnesium silicate Phase A (Mg 7 Si 2 O 8 (OH) 6 ) under high pressures. Our results show that phase A does not undergo any phase transition upto ~ 45 GPa. We find that nonbonded H---H distance reaches a limiting value of 1.85 Ã… at about 45 GPa. The H---H repulsive strain releasing mechanism in Phase A is found to be dramatically different from the hydrogen bond bending one that was proposed by Hofmeister et al 1 for Phase B. It is based on the reduction of one of the O-H bond distances with compression

    Pressure induced amorphization of AIPO<SUB>4</SUB>

    Get PDF
    AlPO4 has been compressed to pressures of 16 GPa in a diamond anvil cell and its X-ray diffraction pattern studied by the energy-dispersive technique. The compound is observed to become amorphous at ~ 12 GPa. This explains the loss of Raman spectrum of AIPO4 reported by Jayaraman and coworkers (1987)
    • …
    corecore