12,140 research outputs found

    Collisional Energy Loss of Non Asymptotic Jets in a QGP

    Get PDF
    We calculate the collisional energy loss suffered by a heavy (charm) quark created at a finite time within a Quark Gluon Plasma (QGP) in the classical linear response formalism as in Peigne {\it et al.} \cite{peigne}. We pay close attention to the problem of formulating a suitable current and the isolation of binding and radiative energy loss effects. We find that unrealistic large binding effects arising in previous formulations must be subtracted. The finite time correction is shown to be important only for very short length scales on the order of a Debye length. The overall energy loss is similar in magnitude to the energy loss suffered by a charge created in the asymptotic past. This result has significant implications for the relative contribution to energy loss from collisional and radiative sources and has important ramifications for the ``single electron puzzle'' at RHIC.Comment: 15 Pages, 11 figures, revte

    Comments on Black Holes in String Theory

    Get PDF
    A very brief review is given of some of the developments leading to our current understanding of black holes in string theory. This is followed by a discussion of two possible misconceptions in this subject - one involving the stability of small black holes and the other involving scale radius duality. Finally, I describe some recent results concerning quasinormal modes of black holes in anti de Sitter spacetime, and their implications for strongly coupled conformal field theories (in various dimensions).Comment: 13 pages. Talk given at Strings '99, Potsdam, German

    Where is the Information Stored in Black Holes?

    Get PDF
    It is shown that many modes of the gravitational field exist only inside the horizon of an extreme black hole in string theory. At least in certain cases, the number of such modes is sufficient to account for the Bekenstein-Hawking entropy. These modes are associated with sources which carry Ramond-Ramond charge, and so may be viewed as the strong coupling limit of D-branes. Although these sources naturally live at the singularity, they are well defined and generate modes which extend out to the horizon. This suggests that the information in an extreme black hole is not localized near the singularity or the horizon, but extends between them.Comment: 21 pages, reference corrected and comment adde

    Quenching and Tomography from RHIC to LHC

    Full text link
    We compare fully perturbative and fully nonperturbative pictures of high-pT energy loss calculations to the first results from LHC. While over-suppressed compared to published ALICE data, parameter-free pQCD predictions based on the WHDG energy loss model constrained to RHIC data simultaneously describe well the preliminary CMS hadron suppression, ATLAS charged hadron v2, and ALICE D meson suppression; we also provide for future reference WHDG predictions for B meson RAA. However, energy loss calculations based on AdS/CFT also qualitatively describe well the RHIC pion and non-photonic electron suppression and LHC charged hadron suppression. We propose the double ratio of charm to bottom quark RAA will qualitatively distinguish between these two energy loss pictures.Comment: 4 pages, 3 figures. Proceedings for Quark Matter 201

    Diagnosing Energy Loss: PHENIX Results on High-pT Hadron Spectra

    Get PDF
    Measurements of inclusive spectra of hadrons at large transverse momentum over a broad range of energy in different collision systems have been performed with the PHENIX experiment at RHIC. The data allow to study the energy and system size dependence of the suppression observed in RAA of high-pT hadrons at sqrt(s_NN)= 200 GeV. Due to the large energy range from sqrt(s_NN)= 22 GeV to 200 GeV, the results can be compared to results from CERN SPS at a similar energy. The large Au+Au dataset from the 2004 run of RHIC also allows to constrain theoretical models that describe the hot and dense matter produced in such collisions. Investigation of particle ratios such as eta/pi0 helps understanding the mechanisms of energy loss.Comment: 4 pages, 6 figures. To appear in the proceedings of the 19th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions (Quark Matter 2006), Shanghai, China, November 14-20, 200

    Evolution of near extremal black holes

    Get PDF
    Near extreme black holes can lose their charge and decay by the emission of massive BPS charged particles. We calculate the greybody factors for low energy charged and neutral scalar emission from four and five dimensional near extremal Reissner-Nordstrom black holes. We use the corresponding emission rates to obtain ratios of the rates of loss of excess energy by charged and neutral emission, which are moduli independent, depending only on the integral charges and the horizon potentials. We consider scattering experiments, finding that evolution towards a state in which the integral charges are equal is favoured, but neutral emission will dominate the decay back to extremality except when one charge is much greater than the others. The implications of our results for the agreement between black hole and D-brane emission rates and for the information loss puzzle are then discussed.Comment: 25 pages, RevTe

    Statistical Effects and the Black Hole/D-brane Correspondence

    Get PDF
    The horizon area and curvature of three-charge BPS black strings are studied in the D-brane ensemble for the stationary black string. The charge distributions along the string are used to translate the classical expressions for the horizon area and curvature of BPS black strings with waves into operators on the D-brane Hilbert space. Despite the fact that any `wavy' black string has smaller horizon area and divergent curvature, the typical values of the horizon area and effects of the horizon curvature in the D-brane ensemble deviate negligibly from those of the original stationary black string in the limit of large integer charges. Whether this holds in general will depend on certain properties of the quantum bound states.Comment: 13 pages, RevTex, small errors corrected, some interpretation changed in light of new result

    Greybody factor for the BTZ black hole and a 5D black hole

    Full text link
    We study the 5D black holes in the type IIB superstring theory compactified on S1Ă—T4S^1 \times T^4. Far from horizon, we have flat space-time. Near horizon, we have AdS3(BTZblackhole)Ă—S3Ă—T4AdS_3(BTZ black hole) \times S^3 \times T^4. We calculate the greybody factor of a minimally coupled scalar by replacing the original geometry(M5Ă—S1Ă—T4M_5 \times S^1 \times T^4) by AdS3Ă—S3Ă—T4AdS_3 \times S^3 \times T^4. In the low-energy scattering, it turns out that the result agrees with the greybody factor of the 5D black hole (or D1 + D5 branes)in the dilute gas approximation. This confirms that the AdSAdS-theory(AdS3Ă—S3Ă—T4AdS_3 \times S^3 \times T^4) contains the essential information about the bulk 5D black holes.Comment: some discussions are added, 15 Pages, No figure, RevTe
    • …
    corecore