1,839 research outputs found

    Random Field and Random Anisotropy Effects in Defect-Free Three-Dimensional XY Models

    Full text link
    Monte Carlo simulations have been used to study a vortex-free XY ferromagnet with a random field or a random anisotropy on simple cubic lattices. In the random field case, which can be related to a charge-density wave pinned by random point defects, it is found that long-range order is destroyed even for weak randomness. In the random anisotropy case, which can be related to a randomly pinned spin-density wave, the long-range order is not destroyed and the correlation length is finite. In both cases there are many local minima of the free energy separated by high entropy barriers. Our results for the random field case are consistent with the existence of a Bragg glass phase of the type discussed by Emig, Bogner and Nattermann.Comment: 10 pages, including 2 figures, extensively revise

    Regularisation, the BV method, and the antibracket cohomology

    Get PDF
    We review the Lagrangian Batalin--Vilkovisky method for gauge theories. This includes gauge fixing, quantisation and regularisation. We emphasize the role of cohomology of the antibracket operation. Our main example is d=2d=2 gravity, for which we also discuss the solutions for the cohomology in the space of local integrals. This leads to the most general form for the action, for anomalies and for background charges.Comment: 12 pages, LaTeX, Preprint-KUL-TF-94/2

    Domain wall entropy of the bimodal two-dimensional Ising spin glass

    Full text link
    We report calculations of the domain wall entropy for the bimodal two-dimensional Ising spin glass in the critical ground state. The L * L system sizes are large with L up to 256. We find that it is possible to fit the variance of the domain wall entropy to a power function of L. However, the quality of the data distributions are unsatisfactory with large L > 96. Consequently, it is not possible to reliably determine the fractal dimension of the domain walls.Comment: 4 pages, 2 figures, submitted to PR

    Vlasov equation and collisionless hydrodynamics adapted to curved spacetime

    Full text link
    The modification of the Vlasov equation, in its standard form describing a charged particle distribution in the six-dimensional phase space, is derived explicitly within a formal Hamiltonian approach for arbitrarily curved spacetime. The equation accounts simultaneously for the Lorentz force and the effects of general relativity, with the latter appearing as the gravity force and an additional force due to the extrinsic curvature of spatial hypersurfaces. For an arbitrary spatial metric, the equations of collisionless hydrodynamics are also obtained in the usual three-vector form

    Power-law correlations and orientational glass in random-field Heisenberg models

    Full text link
    Monte Carlo simulations have been used to study a discretized Heisenberg ferromagnet (FM) in a random field on simple cubic lattices. The spin variable on each site is chosen from the twelve [110] directions. The random field has infinite strength and a random direction on a fraction x of the sites of the lattice, and is zero on the remaining sites. For x = 0 there are two phase transitions. At low temperatures there is a [110] FM phase, and at intermediate temperature there is a [111] FM phase. For x > 0 there is an intermediate phase between the paramagnet and the ferromagnet, which is characterized by a |k|^(-3) decay of two-spin correlations, but no true FM order. The [111] FM phase becomes unstable at a small value of x. At x = 1/8 the [110] FM phase has disappeared, but the power-law correlated phase survives.Comment: 8 pages, 12 Postscript figure

    Evaluation of Energy Concepts for Office Buildings

    Get PDF

    Random Field Models for Relaxor Ferroelectric Behavior

    Full text link
    Heat bath Monte Carlo simulations have been used to study a four-state clock model with a type of random field on simple cubic lattices. The model has the standard nonrandom two-spin exchange term with coupling energy JJ and a random field which consists of adding an energy DD to one of the four spin states, chosen randomly at each site. This Ashkin-Teller-like model does not separate; the two random-field Ising model components are coupled. When D/J=3D / J = 3, the ground states of the model remain fully aligned. When D/J≥4D / J \ge 4, a different type of ground state is found, in which the occupation of two of the four spin states is close to 50%, and the other two are nearly absent. This means that one of the Ising components is almost completely ordered, while the other one has only short-range correlations. A large peak in the structure factor S(k)S (k) appears at small kk for temperatures well above the transition to long-range order, and the appearance of this peak is associated with slow, "glassy" dynamics. The phase transition into the state where one Ising component is long-range ordered appears to be first order, but the latent heat is very small.Comment: 7 pages + 12 eps figures, to appear in Phys Rev

    Hamiltonian BRST-anti-BRST Theory

    Get PDF
    The hamiltonian BRST-anti-BRST theory is developed in the general case of arbitrary reducible first class systems. This is done by extending the methods of homological perturbation theory, originally based on the use of a single resolution, to the case of a biresolution. The BRST and the anti-BRST generators are shown to exist. The respective links with the ordinary BRST formulation and with the sp(2) sp(2) -covariant formalism are also established.Comment: 34 pages, Latex fil
    • …
    corecore