1,006 research outputs found

    A new approach toward geometrical concept of black hole thermodynamics

    Full text link
    Motivated by the energy representation of Riemannian metric, in this paper we study different approaches toward the geometrical concept of black hole thermodynamics. We investigate thermodynamical Ricci scalar of Weinhold, Ruppeiner and Quevedo metrics and show that their number and location of divergences do not coincide with phase transition points arisen from heat capacity. Next, we introduce a new metric to solve these problems. We show that the denominator of the Ricci scalar of the new metric contains terms which coincide with different types of phase transitions. We elaborate the effectiveness of the new metric and shortcomings of the previous metrics with some examples. Furthermore, we find a characteristic behavior of the new thermodynamical Ricci scalar which enables one to distinguish two types of phase transitions. In addition, we generalize the new metric for the cases of more than two extensive parameters and show that in these cases the divergencies of thermodynamical Ricci scalar coincide with phase transition points of the heat capacity.Comment: 13 pages with 7 figures, accepted in EPJ

    Tailored emails prompt electric vehicle owners to engage with tariff switching information

    Get PDF
    The carbon intensity of the electricity used to charge an electric vehicle (EV) is dependent on when in the day charging occurs. However, persuading EV owners to adopt incentives to charge during off-peak hours is challenging. Here we show that governments could exploit the ‘window of opportunity’ created when people purchase their first EV to promote time-of-use tariffs. Email recipients (n = 7,038 EV owners) were more likely to click-through to an information webpage when the email emphasized specific reductions in home-charging costs versus general bill savings. However, the ‘window of opportunity’ for maximizing potential adoption is short; email open rates declined from over 70% immediately after purchase to 40% for recipients owning their EV for over three months. These results demonstrate the potential of prompts to change behaviours for which opt-out enrolment (where enrolment is automatic unless people explicitly opt out) would be unethical or less effective

    Emotional Faces Capture Spatial Attention in 5-Year-Old Children

    Get PDF
    Emotional facial expressions are important social cues that convey salient affective information. Infants, younger children, and adults all appear to orient spatial attention to emotional faces with a particularly strong bias to fearful faces. Yet in young children it is unclear whether or not both happy and fearful faces extract attention. Given that the processing of emotional faces is believed by some to serve an evolutionarily adaptive purpose, attentional biases to both fearful and happy expressions would be expected in younger children. However, the extent to which this ability is present in young children and whether or not this ability is genetically mediated is untested. Therefore, the aims of the current study were to assess the spatial-attentional properties of emotional faces in young children, with a preliminary test of whether this effect was influenced by genetics. Five-year-old twin pairs performed a dot-probe task. The results suggest that children preferentially direct spatial attention to emotional faces, particularly right visual field faces. The results provide support for the notion that the direction of spatial attention to emotional faces serves an evolutionarily adaptive function and may be mediated by genetic mechanisms

    Effects of Short-Term Exposure to Diesel Exhaust on the Ecophysiology, Growth, and Fecundity of Soybean (Glycine max (L.) Merr.) and Chicory (Cichorium intybus L.)

    Get PDF
    Plants growing along roadways are often exposed to vehicle exhaust containing both particulate matter (PM) and various gases that could affect gas exchange and thus plant reproduction. To investigate effects of diesel exhaust exposure on plant ecophysiology, growth, and fecundity, individuals of soybean (Glycine max (L.) Merr.) and chicory (Cichorium intybus L.) were exposed to either exhaust from a diesel generator or ambient air. Exposure occurred daily over a 5-day period (beginning 18 June 2013) using open-top chambers in an agricultural field in southwestern Ohio, United States. Plants were evaluated at 3 times (before, directly after exposure, and following a 5.5-week post-treatment recovery period) for photosynthetic rate (A), stomatal conductance (g), water use efficiency (WUE), stomatal clogging due to PM deposition, and number of nodes. Aboveground biomass, fruit number, mean seed number, and seed mass were measured for soybean after the recovery period. In soybean, A minimally decreased with exposure to diesel exhaust (compared to the control), but an increase in g and a decrease in WUE were detected after the exhaust treatment. Chicory exhibited a relatively low increase in A after the treatment, but there were no clear differences in g or WUE. Growth and fecundity were similar among all soybean plants directly after treatment, but after 5.5 weeks plants exposed to diesel exhaust had increased vegetative biomass while exhibiting no difference in fecundity. These plant species reacted differently to short-term diesel exhaust exposure, suggesting that the impact of diesel exhaust will depend on both the plant species and its physiology

    The SERL Observatory Dataset: Longitudinal Smart Meter Electricity and Gas Data, Survey, EPC and Climate Data for over 13,000 Households in Great Britain

    Get PDF
    The Smart Energy Research Lab (SERL) Observatory dataset described here comprises half-hourly and daily electricity and gas data, SERL survey data, Energy Performance Certificate (EPC) input data and 24 local hourly climate reanalysis variables from the European Centre for Medium-Range Weather Forecasts (ECMWF) for over 13,000 households in Great Britain (GB). Participants were recruited in September 2019, September 2020 and January 2021 and their smart meter data are collected from up to one year prior to sign up. Data collection will continue until at least August 2022, and longer if funding allows. Survey data relating to the dwelling, appliances, household demographics and attitudes were collected at sign up. Data are linked at the household level and UK-based academic researchers can apply for access within a secure virtual environment for research projects in the public interest. This is a data descriptor paper describing how the data were collected, the variables available and the representativeness of the sample compared to national estimates. It is intended to be a guide for researchers working with or considering using the SERL Observatory dataset, or simply looking to learn more about it

    The over-prediction of energy use by EPCs in Great Britain: A comparison of EPC-modelled and metered primary energy use intensity

    Get PDF
    This analysis compares the difference between the Energy Performance Certificate (EPC)-modelled and smart-meter measured annual energy use on a like-for-like basis in 1,374 gas-heated British households from the Smart Energy Research Lab (SERL) Observatory. EPCs and metered energy use were converted to primary energy use intensity (PEUI) to provide a comparison of the same quantity for the first time. We show that EPCs predict significantly more energy use than metered in homes in Great Britain. EPC bands A and B show no statistically significant difference, but all other bands show a significant gap which increases as EPC rating worsens. The PEUI gap widens from −26 kWh/yr/m2 (−8%) for band C to −276 kWh/y/m2 (−48%) for bands F and G. Unlike previous research, we show that the difference persists in homes matching the EPC-model assumptions regarding occupancy, thermostat set-point and whole-home heating; suggesting that occupant behaviour is unlikely to fully explain the discrepancy. EPCs are a core tool in the residential energy sector, and the gap between EPC-modelled and metered energy use could have a significant impact on policy, research, and industry. Future research should investigate disaggregated components of energy use, the underlying thermal model, and assumptions regarding building characteristics

    Ultrathin Oxide Films by Atomic Layer Deposition on Graphene

    Full text link
    In this paper, a method is presented to create and characterize mechanically robust, free standing, ultrathin, oxide films with controlled, nanometer-scale thickness using Atomic Layer Deposition (ALD) on graphene. Aluminum oxide films were deposited onto suspended graphene membranes using ALD. Subsequent etching of the graphene left pure aluminum oxide films only a few atoms in thickness. A pressurized blister test was used to determine that these ultrathin films have a Young's modulus of 154 \pm 13 GPa. This Young's modulus is comparable to much thicker alumina ALD films. This behavior indicates that these ultrathin two-dimensional films have excellent mechanical integrity. The films are also impermeable to standard gases suggesting they are pinhole-free. These continuous ultrathin films are expected to enable new applications in fields such as thin film coatings, membranes and flexible electronics.Comment: Nano Letters (just accepted

    The role of the gradient film properties in silica moisture barriers synthesized in a roll-to-roll atmospheric pressure plasma enhanced CVD reactor

    Get PDF
    Silica-like films for moisture barriers were deposited on a polymeric substrate in an Atmospheric Pressure PECVD reactor using a N2/O2/TEOS gas mixture. Statically deposited silica films were characterized by spatially resolved ATR FTIR and revealed a clear gradient in the silanol concentration. Silanol is an impurity in the silica network, resulting in pore formation, thus a higher silanol content leads to a decrease in the film density. Hence the spatial non-uniformity in the static profile results in a density gradient in the thickness of web-rolled films. The gradual transition from a lower to a higher density film appeared to be an essential requirement for maintaining the film integrity on the polymer. Hence, the porous layer acts as an adhesion promotion layer for the dense top layer. These optimal layer properties are achieved in a continuous single processing step.</p

    Integration of decision support systems to improve decision support performance

    Get PDF
    Decision support system (DSS) is a well-established research and development area. Traditional isolated, stand-alone DSS has been recently facing new challenges. In order to improve the performance of DSS to meet the challenges, research has been actively carried out to develop integrated decision support systems (IDSS). This paper reviews the current research efforts with regard to the development of IDSS. The focus of the paper is on the integration aspect for IDSS through multiple perspectives, and the technologies that support this integration. More than 100 papers and software systems are discussed. Current research efforts and the development status of IDSS are explained, compared and classified. In addition, future trends and challenges in integration are outlined. The paper concludes that by addressing integration, better support will be provided to decision makers, with the expectation of both better decisions and improved decision making processes
    corecore