65,065 research outputs found

    Phase equilibrium in two orbital model under magnetic field

    Full text link
    The phase equilibrium in manganites under magnetic field is studied using a two orbital model, based on the equivalent chemical potential principle for the competitive phases. We focus on the magnetic field induced melting process of CE phase in half-doped manganites. It is predicted that the homogenous CE phase begins to decompose into coexisting ferromagnetic phase and CE phase once the magnetic field exceeds the threshold field. In a more quantitative way, the volume fractions of the two competitive phases in the phase separation regime are evaluated.Comment: 4 pages, 4 figure

    Effect of flow forecasting quality on benefits of reservoir operation - a case study for the Geheyan reservoir (China)

    Get PDF
    This paper presents a methodology to determine the effect of flow forecasting quality on the benefits of reservoir operation. The benefits are calculated in terms of the electricity generated, and the quality of the flow forecasting is defined in terms of lead time and accuracy of the forecasts. In order to determine such an effect, an optimization model for reservoir operation was developed which consists of two sub-models: a long-term (monthly) and a short-term (daily) optimization sub-model. A methodology was developed to couple these two sub-models, so that both short-term benefits (time span in the order of the flow forecasting lead time) and long-term benefits (one year) were considered and balanced. Both sub-models use Discretized Dynamic Programming (DDP) as their optimization algorithms. The Geheyan reservoir on the Qingjiang River in China was taken as case study. Observed (from the 1997 hydrological year) and forecasted flow series were used to calculate the benefits. Forecasted flow series were created by adding noises to the observed series. Different magnitudes of noise reflected different levels of forecasting accuracies. The results reveal, first of all, a threshold lead time of 33 days, beyond which further extension of the forecasting lead time will not lead to a significant increase in benefits. Secondly, for lead times shorter than 33 days, a longer lead time will generally lead to a higher benefit. Thirdly, a perfect inflow forecasting with a lead time of 4 days will realize 87% of the theoretical maximum electricity generated in one year. Fourthly, for a certain lead time, more accurate forecasting leads to higher benefits. For inflow forecasting with a fixed lead time of 4 days and different forecasting accuracies, the benefits can increase by 5 to 9% compared to the actual operation results. It is concluded that the definition of the appropriate lead time will depend mainly on the physical conditions of the basin and on the characteristics of the reservoir. The derived threshold lead time (33 days) gives a theoretical upper limit for the extension of forecasting lead time. Criteria for the appropriate forecasting accuracy for a specific feasible lead-time should be defined from the benefit-accuracy relationship, starting from setting a preferred benefit level, in terms of percentage of the theoretical maximum. Inflow forecasting with a higher accuracy does not always increase the benefits, because these also depend on the operation strategies of the reservoir.\u

    Tensor-polarized structure function b1b_1 in the standard convolution description of the deuteron

    Get PDF
    Tensor-polarized structure functions of a spin-1 hadron are additional observables which do not exist for the spin-1/2 nucleon. They could probe novel aspects of the internal hadron structure. Twist-2 tensor-polarized structure functions are b1b_1 and b2b_2, and they are related by the Callan-Gross-like relation in the Bjorken scaling limit. In this work, we theoretically calculate b1b_1 in the standard convolution description for the deuteron. Two different theoretical models, a basic convolution description and a virtual nucleon approximation, are used for calculating b1b_1 and their results are compared with the HERMES measurement. We found large differences between our theoretical results and the data. Although there is still room to improve by considering higher-twist effects and in the experimental extraction of b1b_1 from the spin asymmetry AzzA_{zz}, there is a possibility that the large differences require physics beyond the standard deuteron model for their interpretation. Future b1b_1 studies could shed light on a new field of hadron physics. In particular, detailed experimental studies of b1b_1 will start soon at the Thomas Jefferson National Accelerator Facility. In addition, there are possibilities to investigate tensor-polarized parton distribution functions and b1b_1 at Fermi National Accelerator Laboratory and a future electron-ion collider. Therefore, further theoretical studies are needed for understanding the tensor structure of the spin-1 deuteron, including a new mechanism to explain the large differences between the current data and our theoretical results.Comment: 12 pages, 7 eps figures, 3 style files, typos are corrected as published in Phys. Rev. D 95, 074036 (2017

    Standard convolution description of deuteron tensor spin structure

    Get PDF
    Spin-1 hadrons have additional structure functions not present for spin 1/2 hadrons. These could probe novel aspects of hadron structure and QCD dynamics. For the deuteron, the tensor structure function b1b_1 inherently mixes quark and nuclear degrees of freedom. These proceedings discuss two standard convolution models applied to calculations of the deuteron b1b_1 structure functions. We find large differences with the existing HERMES data and other convolution model calculations. This leaves room for non-standard contributions to b1b_1 in the deuteron. We also discuss the influence of higher twist nuclear effects in the model calculations and data extraction at kinematics covered in HERMES and Jefferson Lab.Comment: Proceedings of 25th International Workshop on Deep Inelastic Scattering and Related Topics, 3-7 April 2017 University of Birmingha

    The signature of the scattering between dark sectors in large scale cosmic microwave background anisotropies

    Get PDF
    We study the interaction between dark sectors by considering the momentum transfer caused by the dark matter scattering elastically within the dark energy fluid. Describing the dark scattering analogy to the Thomson scattering which couples baryons and photons, we examine the impact of the dark scattering in CMB observations. Performing global fitting with the latest observational data, we find that for a dark energy equation of state w<1w<-1, the CMB gives tight constraints on dark matter-dark energy elastic scattering. Assuming a dark matter particle of proton mass, we derive an elastic scattering cross section of σD<3.295×1010σT\sigma_D < 3.295 \times 10^{-10} \sigma_T where σT\sigma_T is the cross section of Thomson scattering. For w>1w>-1, however, the constraints are poor. For w=1w=-1, σD\sigma_D can formally take any value.Comment: 9 pages, 6 figures, accepted for publication in PR

    Computer simulation of the mathematical modeling involved in constitutive equation development: Via symbolic computations

    Get PDF
    Development of new material models for describing the high temperature constitutive behavior of real materials represents an important area of research in engineering disciplines. Derivation of mathematical expressions (constitutive equations) which describe this high temperature material behavior can be quite time consuming, involved and error prone; thus intelligent application of symbolic systems to facilitate this tedious process can be of significant benefit. A computerized procedure (SDICE) capable of efficiently deriving potential based constitutive models, in analytical form is presented. This package, running under MACSYMA, has the following features: partial differentiation, tensor computations, automatic grouping and labeling of common factors, expression substitution and simplification, back substitution of invariant and tensorial relations and a relational data base. Also limited aspects of invariant theory were incorporated into SDICE due to the utilization of potentials as a starting point and the desire for these potentials to be frame invariant (objective). Finally not only calculation of flow and/or evolutionary laws were accomplished but also the determination of history independent nonphysical coefficients in terms of physically measurable parameters, e.g., Young's modulus, was achieved. The uniqueness of SDICE resides in its ability to manipulate expressions in a general yet predefined order and simplify expressions so as to limit expression growth. Results are displayed when applicable utilizing index notation
    corecore