456 research outputs found
Engineered Optical Nonlocality in Nanostructured Metamaterials
We analyze dispersion properties of metal-dielectric nanostructured
metamaterials. We demonstrate that, in a sharp contrast to the results for the
corresponding effective medium, the structure demonstrates strong optical
nonlocality due to excitation of surface plasmon polaritons that can be
engineered by changing a ratio between the thicknesses of metal and dielectric
layers. In particular, this nonlocality allows the existence of an additional
extraordinary wave that manifests itself in the splitting of the TM-polarized
beam scattered at an air-metamaterial interface
Anomalous transparency of water-air interface for low-frequency sound
Sound transmission through water-air interface is normally weak because of a
strong mass density contrast. Here we show that the transparency of the
interface increases dramatically at low frequencies. Rather counterintuitively,
almost all acoustic energy emitted by a sufficiently shallow monopole source
under water is predicted to be radiated into atmosphere. Physically, increased
transparency at lower frequencies is due to the increasing role of
inhomogeneous waves and a destructive interference of direct and
surface-reflected waves under water. The phenomenon of anomalous transparency
has significant implications for acoustic communication across the water-air
interface, generation of ambient noise, and detection of underwater explosions.Comment: 29 pages, including 4 figure
Biomass burning and pollution aerosol over North America: Organic components and their influence on spectral optical properties and humidification response
Thermal analysis of aerosol size distributions provided size resolved volatility up to temperatures of 400°C during extensive flights over North America (NA) for the INTEX/ICARTT experiment in summer 2004. Biomass burning and pollution plumes identified from trace gas measurements were evaluated for their aerosol physiochemical and optical signatures. Measurements of soluble ionic mass and refractory black carbon (BC) mass, inferred from light absorption, were combined with volatility to identify organic carbon at 400°C (VolatileOC) and the residual or refractory organic carbon, RefractoryOC. This approach characterized distinct constituent mass fractions present in biomass burning and pollution plumes every 5–10 min. Biomass burning, pollution and dust aerosol could be stratified by their combined spectral scattering and absorption properties. The “nonplume” regional aerosol exhibited properties dominated by pollution characteristics near the surface and biomass burning aloft. VolatileOC included most water-soluble organic carbon. RefractoryOC dominated enhanced shortwave absorption in plumes from Alaskan and Canadian forest fires. The mass absorption efficiency of this RefractoryOC was about 0.63 m2 g−1 at 470 nm and 0.09 m2 g−1 at 530 nm. Concurrent measurements of the humidity dependence of scattering, γ, revealed the OC component to be only weakly hygroscopic resulting in a general decrease in γ with increasing OC mass fractions. Under ambient humidity conditions, the systematic relations between physiochemical properties and γ lead to a well-constrained dependency on the absorption per unit dry mass for these plume types that may be used to challenge remotely sensed and modeled optical properties
Ray-based description of normal mode amplitudes in a range-dependent waveguide
An analogue of the geometrical optics for description of the modal structure
of a wave field in a range-dependent waveguide is considered. In the scope of
this approach the mode amplitude is expressed through solutions of the ray
equations. This analytical description accounts for mode coupling and remains
valid in a nonadiabatic environment. It has been used to investigate the
applicability condition of the adiabatic approximation. An applicability
criterion is formulated as a restriction on variations of the action variable
of the ray.Comment: 11 pages, 5 figure
Broadband Fields Radiated in a Solid by Water-Coupled Transducers: A Comparison of Approximate Models, Numerical Approaches and Experiments
In number of configurations, ultrasonic tests in the French nuclear industry are made using water-coupled focused transducers. To study the influence of the various parameters involved in transducer/piece configurations, model-based predictions of the field radiated by transducers are very useful. A model (called Champ-Sons) has been developed at the French Atomic Energy Commission (CEA) to calculate the field radiated by focused or unfocused transducer through liquid/solid interface at normal or oblique incidence [1]. It can deal with radiating surface of complex (3-D) shape (spherical focusing, Fermat’s surfaces, multiple-elements [2] etc.). The calculation is done directly in the time domain for broadband sources and in the frequency domain for narrowband sources. In its present form Champ-Sons deals with either plane or cylindrical interfaces between a fluid and an isotropic solid. It is implemented in a user-friendly software developed at the CEA called CIVA [3] for NDT data processing (eddy-current, ultrasonics, neutrongraphy, radiography). Since non-canonical configurations are considered and pure numerical schemes are too computer intensive, the model treats the refraction at the fluid/solid interface in an approximate way. It has been validated experimentally [1]
Observation of Surface-Avoiding Waves: A New Class of Extended States in Periodic Media
Coherent time-domain optical experiments on GaAs-AlAs superlattices reveal
the exis-tence of an unusually long-lived acoustic mode at ~ 0.6 THz, which
couples weakly to the environment by evading the sample boundaries. Classical
as well as quantum states that steer clear of surfaces are generally shown to
occur in the spectrum of periodic struc-tures, for most boundary conditions.
These surface-avoiding waves are associated with frequencies outside forbidden
gaps and wavevectors in the vicinity of the center and edge of the Brillouin
zone. Possible consequences for surface science and resonant cavity
ap-plications are discussed.Comment: 16 pages, 3 figure
A complex ray-tracing tool for high-frequency mean-field flow interaction effects in jets
This paper presents a complex ray-tracing tool for the calculation of high-frequency Green’s functions in 3D mean field jet flows. For a generic problem, the ray solution suffers from three main deficiencies: multiplicity of solutions, singularities at caustics, and the determining of complex solutions. The purpose of this paper is to generalize, combine and apply existing stationary media methods to moving media scenarios. Multiplicities are dealt with using an equivalent two-point boundary-value problem, whilst non-uniformities at caustics are corrected using diffraction catastrophes. Complex rays are found using a combination of imaginary perturbations, an assumption of caustic stability, and analytic continuation of the receiver curve. To demonstrate this method, the ray tool is compared against a high-frequency modal solution of Lilley’s equation for an off-axis point source. This solution is representative of high-frequency source positions in real jets and is rich in caustic structures. A full utilization of the ray tool is shown to provide excellent results<br/
Elastic Wave Scattering by an Interface Crack in Layered Materials
Interfaces play an important role in structural performance of composite materials, which are widely used in many industrial applications. Composite materials are usually made in layered structure, where two adjacent materials are bonded together along their common faces. Therefore, the inspection technique for determining the quality of the bonding interface is of great interest. The elastic wave scattering method for characterization is often used for this purpose[1].</p
Modelling Quantum Mechanics by the Quantumlike Description of the Electric Signal Propagation in Transmission Lines
It is shown that the transmission line technology can be suitably used for
simulating quantum mechanics. Using manageable and at the same time
non-expensive technology, several quantum mechanical problems can be simulated
for significant tutorial purposes. The electric signal envelope propagation
through the line is governed by a Schrodinger-like equation for a complex
function, representing the low-frequency component of the signal, In this
preliminary analysis, we consider two classical examples, i.e. the Frank-Condon
principle and the Ramsauer effect
Mapping cumulative noise from shipping to inform marine spatial planning
Including ocean noise in marine spatial planning requires predictions of noise levels on large spatiotemporal scales. Based on a simple sound transmission model and ship track data (Automatic Identification System, AIS), cumulative underwater acoustic energy from shipping was mapped throughout 2008 in the west Canadian Exclusive Economic Zone, showing high noise levels in critical habitats for endangered resident killer whales, exceeding limits of “good conservation status” under the EU Marine Strategy Framework Directive. Error analysis proved that rough calculations of noise occurrence and propagation can form a basis for management processes, because spending resources on unnecessary detail is wasteful and delays remedial action
- …