7 research outputs found

    Culturing Pancreatic Islets in Microfluidic Flow Enhances Morphology of the Associated Endothelial Cells

    Get PDF
    Pancreatic islets are heavily vascularized in vivo with each insulin secreting beta-cell associated with at least one endothelial cell (EC). This structure is maintained immediately post-isolation; however, in culture the ECs slowly deteriorate, losing density and branched morphology. We postulate that this deterioration occurs in the absence of blood flow due to limited diffusion of media inside the tissue. To improve exchange of media inside the tissue, we created a microfluidic device to culture islets in a range of flow-rates. Culturing the islets from C57BL6 mice in this device with media flowing between 1 and 7 ml/24 hr resulted in twice the EC-density and -connected length compared to classically cultured islets. Media containing fluorescent dextran reached the center of islets in the device in a flow-rate-dependant manner consistent with improved penetration. We also observed deterioration of EC morphology using serum free media that was rescued by addition of bovine serum albumin, a known anti-apoptotic signal with limited diffusion in tissue. We further examined the effect of flow on beta-cells showing dampened glucose-stimulated Ca2+-response from cells at the periphery of the islet where fluid shear-stress is greatest. However, we observed normal two-photon NAD(P)H response and insulin secretion from the remainder of the islet. These data reveal the deterioration of islet EC-morphology is in part due to restricted diffusion of serum albumin within the tissue. These data further reveal microfluidic devices as unique platforms to optimize islet culture by introducing intercellular flow to overcome the restricted diffusion of media components

    Hypoxia induction in cultured pancreatic islets enhances endothelial cell morphology and survival while maintaining beta-cell function.

    No full text
    BackgroundPancreatic islets are heavily vascularized in vivo yet lose this vasculature after only a few days in culture. Determining how to maintain islet vascularity in culture could lead to better outcomes in transplanting this tissue for the treatment of type 1 diabetes as well as provide insight into the complex communication between beta-cells and endothelial cells (ECs). We previously showed that islet ECs die in part due to limited diffusion of serum albumin into the tissue. We now aim to determine the impact of hypoxia on islet vascularization.MethodsWe induced hypoxia in cultured mouse islets using the hypoxia mimetic cobalt chloride (100 μM CoCl2). We measured the impact on islet metabolism (two-photon NAD(P)H and Rh123 imaging) and function (insulin secretion and survival). We also measured the impact on hypoxia related transcripts (HIF-1α, VEGF-A, PDK-1, LDHA, COX4) and confirmed increased VEGF-A expression and secretion. Finally, we measured the vascularization of islets in static and flowing culture using PECAM-1 immunofluorescence.ResultsCoCl2 did not induce significant changes in beta cell metabolism (NAD(P)H and Rh123), insulin secretion, and survival. Consistent with hypoxia induction, CoCl2 stimulated HIF-1α, PDK-1, and LDHA transcripts and also stimulated VEGF expression and secretion. We observed a modest switch to the less oxidative isoform of COX4 (isoform 1 to 2) and this switch was noted in the glucose-stimulated cytoplasmic NAD(P)H responses. EC morphology and survival were greater in CoCl2 treated islets compared to exogenous VEGF-A in both static (dish) and microfluidic flow culture.ConclusionsHypoxia induction using CoCl2 had a positive effect on islet EC morphology and survival with limited impact on beta-cell metabolism, function, and survival. The EC response appears to be due to endogenous production and secretion of angiogenic factors (e.g. VEGF-A), and mechanistically independent from survival induced by serum albumin

    The iron hypothesis of atherosclerosis and its clinical impact

    No full text
    corecore