22,095 research outputs found

    Some New Exact Ground States for Generalize Hubbard Models

    Full text link
    A set of new exact ground states of the generalized Hubbard models in arbitrary dimensions with explicitly given parameter regions is presented. This is based on a simple method for constructing exact ground states for homogeneous quantum systems.Comment: 9 pages, Late

    An Axisymmetric Gravitational Collapse Code

    Get PDF
    We present a new numerical code designed to solve the Einstein field equations for axisymmetric spacetimes. The long term goal of this project is to construct a code that will be capable of studying many problems of interest in axisymmetry, including gravitational collapse, critical phenomena, investigations of cosmic censorship, and head-on black hole collisions. Our objective here is to detail the (2+1)+1 formalism we use to arrive at the corresponding system of equations and the numerical methods we use to solve them. We are able to obtain stable evolution, despite the singular nature of the coordinate system on the axis, by enforcing appropriate regularity conditions on all variables and by adding numerical dissipation to hyperbolic equations.Comment: 19 pages, 9 figure

    Charge-ordered ferromagnetic phase in manganites

    Full text link
    A mechanism for charge-ordered ferromagnetic phase in manganites is proposed. The mechanism is based on the double exchange in the presence of diagonal disorder. It is modeled by a combination of the Ising double-exchange and the Falicov-Kimball model. Within the dynamical mean-field theory the charge and spin correlation function are explicitely calculated. It is shown that the system exhibits two successive phase transitions. The first one is the ferromagnetic phase transition, and the second one is a charge ordering. As a result a charge-ordered ferromagnetic phase is stabilized at low temperature.Comment: To appear in Phys. Rev.

    Numerical evolution of matter in dynamical axisymmetric black hole spacetimes. I. Methods and tests

    Full text link
    We have developed a numerical code to study the evolution of self-gravitating matter in dynamic black hole axisymmetric spacetimes in general relativity. The matter fields are evolved with a high-resolution shock-capturing scheme that uses the characteristic information of the general relativistic hydrodynamic equations to build up a linearized Riemann solver. The spacetime is evolved with an axisymmetric ADM code designed to evolve a wormhole in full general relativity. We discuss the numerical and algorithmic issues related to the effective coupling of the hydrodynamical and spacetime pieces of the code, as well as the numerical methods and gauge conditions we use to evolve such spacetimes. The code has been put through a series of tests that verify that it functions correctly. Particularly, we develop and describe a new set of testbed calculations and techniques designed to handle dynamically sliced, self-gravitating matter flows on black holes, and subject the code to these tests. We make some studies of the spherical and axisymmetric accretion onto a dynamic black hole, the fully dynamical evolution of imploding shells of dust with a black hole, the evolution of matter in rotating spacetimes, the gravitational radiation induced by the presence of the matter fields and the behavior of apparent horizons through the evolution.Comment: 42 pages, 20 figures, submitted to Phys Rev

    Variational theory of flux-line liquids

    Full text link
    We formulate a variational (Hartree like) description of flux line liquids which improves on the theory we developed in an earlier paper [A.M. Ettouhami, Phys. Rev. B 65, 134504 (2002)]. We derive, in particular, how the massive term confining the fluctuations of flux lines varies with temperature and show that this term vanishes at high enough temperatures where the vortices behave as freely fluctuating elastic lines.Comment: 10 pages, 1 postscript figur

    Stacking Faults, Bound States, and Quantum Hall Plateaus in Crystalline Graphite

    Full text link
    We analyze the electronic properties of a simple stacking defect in Bernal graphite. We show that a bound state forms, which disperses as |\bfk-\bfK|^3 in the vicinity of either of the two inequivalent zone corners \bfK. In the presence of a strong c-axis magnetic field, this bound state develops a Landau level structure which for low energies behaves as E\nd_n\propto |n B|^{3/2}. We show that buried stacking faults have observable consequences for surface spectroscopy, and we discuss the implications for the three-dimensional quantum Hall effect (3DQHE). We also analyze the Landau level structure and chiral surface states of rhombohedral graphite, and show that, when doped, it should exhibit multiple 3DQHE plateaus at modest fields.Comment: 19 page
    • …
    corecore