562 research outputs found

    Rupture Process of the 2004 Sumatra–Andaman Earthquake from Tsunami Waveform Inversion

    Get PDF
    The aim of this work is to infer the slip distribution and rupture velocity along the rupture zone of the 26 December 2004 Sumatra–Andaman earthquake from available tide gage records of the tsunami. We selected waveforms from 14 stations, distributed along the coast of the Indian Ocean. Then we subdivided the fault plane into 16 subfaults (both along strike and downdip) following the geometry and mechanism proposed by Banerjee et al. (2005) and computed the corresponding Green’s functions by numerical solution of the shallow-water equations through a finitedifference method. The slip distribution and rupture velocity were determined simultaneously by means of a simulated annealing technique. We compared the recorded and synthetic waveforms in the time domain, using a cost function that is a trade-off between the L1 and L2 norms. Preliminary tests on a synthetic dataset, together with a posteriori statistical analysis of the model ensemble enabled us to assess the effectiveness of the method and to quantify the model uncertainty. The main finding is that the best source model features a nonuniform distribution of coseismic slip, with high slip values concentrated into three main patches: the first is located in the southern part of the fault, off the coast of the Aceh Province; the second between 6.5 N and 11 N; and the third at depth, between 11 N and 14 N. Furthermore, we estimated that the rupture propagated at an average speed of 2.0 km/sec

    Rupture Process of the April 18, 1906 California Earthquake from near-field Tsunami Waveform Inversion

    Get PDF
    The April 18, 1906 M8 California earthquake generated a small local tsunami that was recorded in the near-field by the Presidio, San Francisco tide-gage, located near the Golden Gate. We investigate the causative, tsunamigenic seismic source by forward modeling and nonlinear inversion of the Presidio marigram. We use existing seismological and geological observations to fix the fault system geometry and the surface slip on the onland portions of the San Andreas fault (SAF). We perform synthetic inversions to show that the single, near-field marigram constrains the main features of the rupture on the portion of the SAF system offshore of the Golden Gate. Finally we perform nonlinear inversions for the slip distribution and the timing of the rupture of the 1906 earthquake. Our results, in agreement with previous studies, identify a dilatational step-over and show a bi-lateral rupture, possibly originating or propagated through the step-over region. We find that little or no co-seismic slip on normal faults in the step-over region is required to fit the marigram, and we obtain adequate fits when allowing delays in the source initiation times of up to 3 minutes on the various fault segments. We constrain slip to be of about 5-6 meters for the onshore portion of the SAF to the northwest of the Golden Gate, in agreement with 1906 surface observations of fault offset. Our results favour the hypothesis of a vertical dip for a currently aseismic SAF to the southeast of the Golden Gate, under the San Francisco Peninsula

    Source process of the September 12, 2007 MW 8.4 Southern Sumatra earthquake from tsunami tide gauge record inversion

    Get PDF
    We infer the slip distribution and average rupture velocity of the magnitude MW 8.4 September 12, 2007, southern Sumatra earthquake from available tide-gauge records of the ensuing tsunami. We select 9 waveforms recorded along the west coast of Sumatra and in the Indian Ocean. Slip distribution and rupture velocity are determined simultaneously by means of a non linear inversion method. We find high slip values (∼10 m) into a patch 100 km long and 50 km large, between 20 and 30 km of depth, about 100 km north-west from the epicenter. We conclude this earthquake did not rupture the whole area of the 1833 event, indicating some slip has still to occurr. Our estimate of rupture velocity is of 2.1±0.4 km/sec. The relatively large depth of the main slip patch is the likely explanation for the low damaging observed tsunami

    Source process of the September 12, 2007 MW 8.4 Southern Sumatra earthquake from tsunami tide gauge record inversion

    Get PDF
    We infer the slip distribution and average rupture velocity of the magnitude MW 8.4 September 12, 2007, Southern Sumatra earthquake from available tide-gauge records of the ensuing tsunami. We select 9 waveforms recorded along the west coast of Sumatra and in the Indian Ocean. We assume the fault plane and the slip direction to be consistent with both the geometry of the subducting plate and the early focal mechanism solutions. Slip distribution and rupture velocity are determined simultaneously by means of a non linear inversion method. We find high slip values (∼10 m) into a patch 100 km long and 50 km large, between 20 and 30 km of depth, about 100 km north-west from the epicenter. Our estimate of rupture velocity is of 2.1±0.4 km/sec. The relatively large depth of the main slip patch is the likely explanation for the small observed tsunami

    Kinematics and Source Zone Properties of the 2004 Sumatra-Andaman Earthquake and Tsunami: Nonlinear Joint Inversion of Tide-Gage, Satellite Altimetry and GPS data

    Get PDF
    We (re)analyzed the source of the 26 December 2004 Sumatra-Andaman earthquake and tsunami through a nonlinear joint inversion of an in-homogeneous dataset made up of tide-gages, satellite altimetry, and far-field GPS recordings. The purpose is two-fold: (1) the retrieval of the main kinematics rupture parameters (slip, rake, rupture velocity); (2) the inference of the rigidity of the source zone. We independently estimate the slip from tsunami data and the seismic moment from geodetic data, so to derive the rigidity. Our results confirm that the source of the 2004 Sumatra-Andaman earthquake has a complex geometry, constituted by three main slip patches, with slip peaking at ~30 meters in the Southern part of the source. The rake direction rotates counter-clockwise at North, according to the direction of convergence along the trench. The rupture velocity is higher in the deeper than in the shallower part of the source, consistently with the expected increase of rigidity with depth. It is also lower in the Northern part, consistently with known variations of the incoming plate properties and shear velocity. Our model features a rigidity (20-30 GPa), that is lower than PREM average for the seismogenic volume [Dziewonski and Anderson, 1981]. The source rigidity is one of the factors controlling the tsunamigenesis: for a given seismic moment, the lower the rigidity, the higher the induced seafloor displacement. The general consistence between our source model and previous studies supports the effectiveness of our approach to the joint inversion of geodetic and tsunami data for the rigidity estimation

    Tsunami scenarios in the Mediterranean

    Get PDF
    We calculated the impact on Southern Italy of a large set of tsunamis resulting from earthquakes generated by major fault zones of the Mediterranean Sea. Our approach merges updated knowledge on the regional tectonic setting and scenario-like calculations of expected tsunami impact. We selected three potential source zones located at short, intermediate and large distance from our target coastlines: the Southern Tyrrhenian thrust belt; the Tell-Atlas thrust belt; and the western Hellenic Arc. For each zone we determined a Maximum Credible Earthquake and described the geometry, kinematics and size of its associated Typical Fault. We then let the Typical Fault float along strike of its parent source zone and simulated all tsunamis it could trigger. Simulations are based on the solution of the nonlinear shallow water equations through a finite-difference technique. For each run we calculated the wave fields at desired simulation times and the maximum water elevation field, then produced travel-time maps and maximum wave-height profiles along the target coastlines. The results show a highly variable impact for tsunamis generated by the different source zones. For example, a large Hellenic Arc earthquake will produce a much higher tsunami wave (up to 5 m) than those of the other two source zones (up to 1.5 m). This implies that tsunami scenarios for Mediterranean Sea countries must necessarily be computed at the scale of the entire basin. Our work represents a pilot study for constructing a basin-wide tsunami scenario database to be used for tsunami hazard assessment and early warning

    Total synthesis and biological evaluation of the tetramic acid based natural product harzianic acid and its stereoisomers

    Get PDF
    Financial support for this project was provided by Cancer Research UK (Grant No. C21383/A6950)The bioactive natural product harzianic acid was prepared for the first time in just six steps (longest linear sequence) with an overall yield of 22%. The identification of conditions to telescope amide bond formation and a Lacey-Dieckmann reaction into one pot proved important. The three stereoisomers of harzianic acid were also prepared, providing material for comparison of their biological activity. While all of the isomers promoted root growth, improved antifungal activity was unexpectedly associated with isomers in the enantiomeric series opposite that of harzianic acid.Publisher PDFPeer reviewe

    Cross-talk between signaling pathways leading to defense against pathogens and insects

    Get PDF
    In nature, plants interact with a wide range of organisms, some of which are harmful (e.g. pathogens, herbivorous insects), while others are beneficial (e.g. growth-promoting rhizobacteria, mycorrhizal fungi, and predatory enemies of herbivores). During the evolutionary arms race between plants and their attackers, primary and secondary immune responses evolved to recognize common or highly specialized features of microbial pathogens (Chisholm et al., 2006), resulting in sophisticated mechanisms of defense

    Autotrophic and Heterotrophic Growth Conditions Modify Biomolecole Production in the Microalga Galdieria sulphuraria (Cyanidiophyceae, Rhodophyta)

    Get PDF
    Algae have multiple similarities with fungi, with both belonging to the Thallophyte, a polyphyletic group of non-mobile organisms grouped together on the basis of similar characteristics, but not sharing a common ancestor. The main difference between algae and fungi is noted in their metabolism. In fact, although algae have chlorophyll-bearing thalloids and are autotrophic organisms, fungi lack chlorophyll and are heterotrophic, not able to synthesize their own nutrients. However, our studies have shown that the extremophilic microalga Galderia sulphuraria (GS) can also grow very well in heterotrophic conditions like fungi. This study was carried out using several approaches such as scanning electron microscope (SEM), gas chromatography/mass spectrometry (GC/MS), and infrared spectrophotometry (ATR-FTIR). Results showed that the GS, strain ACUF 064, cultured in autotrophic (AGS) and heterotrophic (HGS) conditions, produced different biomolecules. In particular, when grown in HGS, the algae (i) was 30% larger, with an increase in carbon mass that was 20% greater than AGS; (ii) produced higher quantities of stearic acid, oleic acid, monounsaturated fatty acids (MUFAs), and ergosterol; (iii) produced lower quantities of fatty acid methyl esters (FAMEs) such as methyl palmytate, and methyl linoleate, saturated fatty acids (SFAs), and poyliunsaturated fatty acids (PUFAs). ATR-FTIR and principal component analysis (PCA) statistical analysis confirmed that the macromolecular content of HGS was significantly different from AGS. The ability to produce different macromolecules by changing the trophic conditions may represent an interesting strategy to induce microalgae to produce different biomolecules that can find applications in several fields such as food, feed, nutraceutical, or energy production
    corecore