2,196 research outputs found

    Development, Validation, and Clinical Application of a Numerical Model for Pulse Wave Velocity Propagation in a Cardiovascular System with Application to Noninvasive Blood Pressure Measurements

    Get PDF
    High blood pressure blood pressure is an important risk factor for cardiovascular disease and affects almost one-third of the U.S. adult population. Historical cuff-less non-invasive techniques used to monitor blood pressure are not accurate and highlight the need for first principal models. The first model is a one-dimensional model for pulse wave velocity (PWV) propagation in compliant arteries that accounts for nonlinear fluids in a linear elastic thin walled vessel. The results indicate an inverse quadratic relationship (R^2=.99) between ejection time and PWV, with ejection time dominating the PWV shifts (12%). The second model predicts the general relationship between PWV and blood pressure with a rigorous account of nonlinearities in the fluid dynamics, blood vessel elasticity, and finite dynamic deformation of a membrane type thin anisotropic wall. The nonlinear model achieves the best match with the experimental data. To retrieve individual vascular information of a patient, the inverse problem of hemodynamics is presented, calculating local orthotropic hyperelastic properties of the arterial wall. The final model examines the impact of the thick arterial wall with different material properties in the radial direction. For a hypertensive subject the thick wall model provides improved accuracy up to 8.4% in PWV prediction over its thin wall counterpart. This translates to nearly 20% improvement in blood pressure prediction based on a PWV measure. The models highlight flow velocity is additive to the classic pressure wave, suggesting flow velocity correction may be important for cuff-less, non-invasive blood pressure measures. Systolic flow correction of the measured PWV improves the R2 correlation to systolic blood pressure from 0.81 to 0.92 for the mongrel dog study, and 0.34 to 0.88 for the human subjects study. The algorithms and insight resulting from this work can enable the development of an integrated microsystem for cuff-less, non-invasive blood pressure monitoring

    Quantification of Hemodynamic Pulse Wave Velocity Based on a Thick Wall Multi-Layer Model for Blood Vessels

    Get PDF
    Pulse wave velocity (PWV) is an important index of arterial hemodynamics, which lays the foundation for continuous, noninvasive blood pressure automated monitoring. The goal of this paper is to examine the accuracy of PWV prediction based on a traditional homogeneous structural model for thin-walled arterial segments. In reality arteries are described as composite heterogeneous hyperelastic structures, where the thickness dimension cannot be considered small compared to the cross section size. In this paper we present a hemodynamic fluid - structure interaction model accounting for the variation of geometry and material properties in a radial direction. The model is suitable to account for the highly nonlinear orthotropic material undergoing finite deformation for each layer. Numerical analysis of single and two layer arterial segments shows that a single thick layer model provides sufficient accuracy to predict PWV. The dependence of PWV on pressure for three vessels of different thicknesses is compared against a traditional thin wall model of a membrane shell interacting with an incompressible fluid. The presented thick wall model provides greater accuracy in the prediction of PWV, and will be important for blood pressure estimation based on PWV measurements
    • …
    corecore