176 research outputs found
Give Us A Chance: The Employment Experiences of New Settlers From East Asia
Our research on new settlers from Hong Kong, Taiwan and South Korea has revealed a general unhappiness with the lack of government planning and preparation to meet the needs of migrants who had been actively encouraged to come to New Zealand to help establish links with Asia. Over half had no paid employment in New Zealand. Among those who were currently employed, less than half had been able to obtain jobs related to their previous work experience and skills. Those who wished to do business were dissatisfied with the lack of information about business investment opportunities and the tax system. When it proved impossible to find appropriate employment or set up business in New Zealand in an effort to remain self-reliant, some immigrants chose to leave the family in New Zealand and return to work in their country of origin
Give Us A Chance: The Employment Experiences of New Settlers From East Asia
Our research on new settlers from Hong Kong, Taiwan and South Korea has revealed a general unhappiness with the lack of government planning and preparation to meet the needs of migrants who had been actively encouraged to come to New Zealand to help establish links with Asia. Over half had no paid employment in New Zealand. Among those who were currently employed, less than half had been able to obtain jobs related to their previous work experience and skills. Those who wished to do business were dissatisfied with the lack of information about business investment opportunities and the tax system. When it proved impossible to find appropriate employment or set up business in New Zealand in an effort to remain self-reliant, some immigrants chose to leave the family in New Zealand and return to work in their country of origin
In-situ characterization of the Hamamatsu R5912-HQE photomultiplier tubes used in the DEAP-3600 experiment
The Hamamatsu R5912-HQE photomultiplier-tube (PMT) is a novel high-quantum
efficiency PMT. It is currently used in the DEAP-3600 dark matter detector and
is of significant interest for future dark matter and neutrino experiments
where high signal yields are needed.
We report on the methods developed for in-situ characterization and
monitoring of DEAP's 255 R5912-HQE PMTs. This includes a detailed discussion of
typical measured single-photoelectron charge distributions, correlated noise
(afterpulsing), dark noise, double, and late pulsing characteristics. The
characterization is performed during the detector commissioning phase using
laser light injected through a light diffusing sphere and during normal
detector operation using LED light injected through optical fibres
Improving Photoelectron Counting and Particle Identification in Scintillation Detectors with Bayesian Techniques
Many current and future dark matter and neutrino detectors are designed to
measure scintillation light with a large array of photomultiplier tubes (PMTs).
The energy resolution and particle identification capabilities of these
detectors depend in part on the ability to accurately identify individual
photoelectrons in PMT waveforms despite large variability in pulse amplitudes
and pulse pileup. We describe a Bayesian technique that can identify the times
of individual photoelectrons in a sampled PMT waveform without deconvolution,
even when pileup is present. To demonstrate the technique, we apply it to the
general problem of particle identification in single-phase liquid argon dark
matter detectors. Using the output of the Bayesian photoelectron counting
algorithm described in this paper, we construct several test statistics for
rejection of backgrounds for dark matter searches in argon. Compared to simpler
methods based on either observed charge or peak finding, the photoelectron
counting technique improves both energy resolution and particle identification
of low energy events in calibration data from the DEAP-1 detector and
simulation of the larger MiniCLEAN dark matter detector.Comment: 16 pages, 16 figure
Radon backgrounds in the DEAP-1 liquid-argon-based Dark Matter detector
The DEAP-1 \SI{7}{kg} single phase liquid argon scintillation detector was
operated underground at SNOLAB in order to test the techniques and measure the
backgrounds inherent to single phase detection, in support of the
\mbox{DEAP-3600} Dark Matter detector. Backgrounds in DEAP are controlled
through material selection, construction techniques, pulse shape discrimination
and event reconstruction. This report details the analysis of background events
observed in three iterations of the DEAP-1 detector, and the measures taken to
reduce them.
The Rn decay rate in the liquid argon was measured to be between 16
and \SI{26}{\micro\becquerel\per\kilogram}. We found that the background
spectrum near the region of interest for Dark Matter detection in the DEAP-1
detector can be described considering events from three sources: radon
daughters decaying on the surface of the active volume, the expected rate of
electromagnetic events misidentified as nuclear recoils due to inefficiencies
in the pulse shape discrimination, and leakage of events from outside the
fiducial volume due to imperfect position reconstruction. These backgrounds
statistically account for all observed events, and they will be strongly
reduced in the DEAP-3600 detector due to its higher light yield and simpler
geometry
Multitarget Stool DNA Test Performance in an Average-Risk Colorectal Cancer Screening Population
INTRODUCTION: We set out to evaluate the performance of a multitarget stool DNA (MT-sDNA) in an average-risk colonoscopy-controlled colorectal cancer (CRC) screening population. MT-sDNA stool test results were evaluated against fecal immunochemical test (FIT) results for the detection of different lesions, including molecularly defined high-risk adenomas and several other tumor characteristics. METHODS: Whole stool samples (n = 1,047) were prospectively collected and subjected to an MT-sDNA test, which tests for KRAS mutations, NDRG4 and BMP3 promoter methylation, and hemoglobin. Results for detecting CRC (n = 7), advanced precancerous lesions (advanced adenoma [AA] and advanced serrated polyps; n = 119), and non-AAs (n = 191) were compared with those of FIT alone (thresholds of 50, 75, and 100 hemoglobin/mL). AAs with high risk of progression were defined by the presence of specific DNA copy number events as measured by low-pass whole genome sequencing. RESULTS: The MT-sDNA test was more sensitive than FIT alone in detecting advanced precancerous lesions (46% (55/119) vs 27% (32/119), respectively, P < 0.001). Specificities among individuals with nonadvanced or negative findings (controls) were 89% (791/888) and 93% (828/888) for MT-sDNA and FIT testing, respectively. A positive MT-sDNA test was associated with multiple lesions (P = 0.005), larger lesions (P = 0.03), and lesions with tubulovillous architecture (P = 0.04). The sensitivity of the MT-sDNA test or FIT in detecting individuals with high-risk AAs (n = 19) from individuals with low-risk AAs (n = 52) was not significantly different. DISCUSSION: In an average-risk screening population, the MT-sDNA test has an increased sensitivity for detecting advanced precancerous lesions compared with FIT alone. AAs with a high risk of progression were not detected with significantly higher sensitivity by MT-sDNA or FIT
Phylogenetically Widespread Polyembryony in Cyclostome Bryozoans and the Protracted Asynchronous Release of Clonal Brood-Mates
The file attached is the Published/publisher’s pdf version of the articl
Design and construction of the DEAP-3600 dark matter detector
The Dark matter Experiment using Argon Pulse-shape discrimination (DEAP) has been designed for a direct detection search for particle dark matter using a single-phase liquid argon target. The projected cross section sensitivity for DEAP-3600 to the spin-independent scattering of Weakly Interacting Massive Particles (WIMPs) on nucleons is 10−46cm2 for a 100 GeV/c2 WIMP mass with a fiducial exposure of 3 tonne-years. This paper describes the physical properties and construction of the DEAP-3600 detector
Recommended from our members
Design and construction of the DEAP-3600 dark matter detector
The Dark matter Experiment using Argon Pulse-shape discrimination (DEAP) has been designed for a direct detection search for particle dark matter using a single-phase liquid argon target. The projected cross section sensitivity for DEAP-3600 to the spin-independent scattering of Weakly Interacting Massive Particles (WIMPs) on nucleons is 10 cm for a 100 GeV/c WIMP mass with a fiducial exposure of 3 tonne-years. This paper describes the physical properties and construction of the DEAP-3600 detector. −46 2
- …