44 research outputs found

    Boiling heat transfer for high velocity flow of highly subcooled water

    Get PDF
    "October 1998."Includes bibliographical references (p. 27-28

    Alloy Recovery and Control in Steel Melting

    Get PDF
    Alloy recovery plays an important role in steel melting economics because the cost of alloying additives such as ferroalloys and pure non-ferrous metals is significantly higher than the cost of steel scrap. Recovery of alloying additives also influences the reproducibility of steel properties from heat to heat. This paper reviews alloy recovery and final chemistry distributions at seven steel foundries and preliminary laboratory studies of alloy dissolution in ladles. Melting and alloy practices were observed for several plant trial heats in each of the foundries. Alloying and chemistry data were collected for an additional 20 - 155 heats at each plant. The recovery of alloying additives depends on the type of furnace and individual foundry practices. EAF operations had greater variations in final chemistry performance than induction furnace operations. Laboratory experiments showed that there is a potential for increased alloy recovery and control through argon stirring with a porous plug. Argon stirring decreased mixing time by 50% and decreased the local variation in steel composition

    A Modified Johnson-Cook Model Incorporating the Effect of Grain Size on Flow Stress

    Get PDF
    The mechanical properties of steel are influenced by grain size, which can change through mechanisms such as nucleation and growth at elevated temperatures. However, the classic Johnson-Cook model that is widely used in hot deformation simulations does not consider the effect of grain size on flow stress. In this study, the Johnson-Cook model was modified to incorporate the effects of austenite grain size on flow stress. A finite element model was employed to characterize the effects of grain size on the flow stress for different steel grades over a range of temperatures (900⁰ to 1300⁰). Simulation results show good agreement with experimental observations

    Active Mg Estimation Using Thermal Analysis: A Rapid Method to Control Nodularity in Ductile Cast Iron Production

    Get PDF
    Appropriate nodularity in ductile iron castings is strongly associated with the presence of high enough not combined Mg dissolved in the melt to cast. However, the residual Mg which is commonly measured for production control accounts for both dissolved Mg and Mg combined as oxides and sulfides. To account for the uncertainties associated with such a control, it is quite usual to over treat the melt with the risk of porosity appearance. A new methodology based on thermal analysis has been developed in the present work so as to estimate the amount of free Mg dissolved in the melt ready for pouring. A combination of Te mixture and a new “reactive mixture” composed of sulfur plus a commercial inoculant has been prepared for this purpose. This reactive mixture is able to transform the magnesium remaining dissolved in the melt to combined forms of this element. Experiments performed both during start of production (when Mg overtreatment is usual) and during normal mass production indicate that important variations of free Mg occur without relevant changes in residual Mg content as determined by spectrometry. The method developed in the present work has shown to be highly effective to detect those melt batches where active Mg content is not high enough for guaranteeing a correct nodularity of castings. Selection of proper active Mg thresholds and a correct inoculation process are critical to avoid “false”-negative results when using this new method

    Novel Approaches to Analyze Structure of Ductile Iron

    No full text
    corecore