379 research outputs found
Field Induced Nodal Order Parameter in the Tunneling Spectrum of YBaCuO Superconductor
We report planar tunneling measurements on thin films of
YBaCuO at various doping levels under magnetic fields. By
choosing a special setup configuration, we have probed a field induced energy
scale that dominates in the vicinity of a node of the d-wave superconducting
order parameter. We found a high doping sensitivity for this energy scale. At
Optimum doping this energy scale is in agreement with an induced
order parameter. We found that it can be followed down to low fields at optimum
doping, but not away from it.Comment: 9 pages, 8 figures, accepted for publication in Phys. Rev.
Determination of the critical current density in the d-wave superconductor YBCO under applied magnetic fields by nodal tunneling
We have studied nodal tunneling into YBa2Cu3O7-x (YBCO) films under magnetic
fields. The films' orientation was such that the CuO2 planes were perpendicular
to the surface with the a and b axis at 450 form the normal. The magnetic field
was applied parallel to the surface and perpendicular to the CuO2 planes. The
Zero Bias Conductance Peak (ZBCP) characteristic of nodal tunneling splits
under the effect of surface currents produced by the applied fields. Measuring
this splitting under different field conditions, zero field cooled and field
cooled, reveals that these currents have different origins. By comparing the
field cooled ZBCP splitting to that taken in decreasing fields we deduce a
value of the Bean critical current superfluid velocity, and calculate a Bean
critical current density of up to 3*10^7 A/cm2 at low temperatures. This
tunneling method for the determination of critical currents under magnetic
fields has serious advantages over the conventional one, as it avoids having to
make high current contacts to the sample.Comment: 8 pages, 2 figure
Plant growth promoting rhizobacteria and kinetin as ways to promote corn growth and yield in a short growing season area
Abstract The base temperature for germination of corn is approximately 10°C, which results in slow germination and emergence of corn crops sown into cool soils. The effects of plant-growth-promoting rhizobacteria (PGPR) and kinetin on grain and sweet corn emergence, plant growth and yield were studied under short season conditions in 1996 and 1997. Two PGPR strains (Serratia proteamaculans 1-102 and Serratia liquefaciens 2-68) were used. The kinetin concentrations were 0, 1 and 5 mM. The experiment was structured as a randomized complete block design with four replicates. The plant growth responses were variable and depended on the PGPR strain, harvest date and growth parameters evaluated. There were interactions among PGPR, kinetin and corn hybrid. PGPR provided a greater stimulation of seedling emergence than kinetin. PGPR strain 1-102 was best at promoting emergence. One month after planting, both PGPR and kinetin increased plant growth, and PGPR strain 2-68 resulted in a greater growth than that of strain 1-102. PGPR strain 2-68 plus 1 mM kinetin was the best treatment for promoting plant growth. The plant height and root dry weight of sweet corn were less affected than those of grain corn. The effects of PGPR on plant growth decreased as the plants developed. Two months after planting, there were no effects of kinetin on plant growth, however, PGPR still had positive effects on the leaf area of grain corn, but they decreased the leaf area of sweet corn. The plant dry weight of grain corn was increased by PGPR strain 2-68. The grain corn yield was increased by PGPR strain 2-68 in both years. In 1997, PGPR strain 2-68 increased the sweet corn yield. Kinetin alone had no effects on yields in either year for the two cultivars studied
Mohs math – where the error hides
BACKGROUND: Mohs surgical technique allows a full view of surgical margins and has a reported cure rate approaching 100%. METHOD: A survey amongst Mohs surgeons was performed to assess operator technique. In addition, an animated clay model was constructed to identify and quantify tissue movement seen during the processing of Mohs surgical specimens. RESULTS: There is variability in technique used in Mohs surgery in regards to the thickness of layers, and the number of blocks layers are cut into. A mathematical model is described which assesses the clinical impact of this variability. CONCLUSION: Our mathematical model identifies key aspects of technique that may contribute to error. To keep the inherent error rate at a minimum, we advocate minimal division and minimal physical thickness of Mohs specimens
Non Linear Correlation between Statistically Sensitive Ultrasonic Features and the Strength of Composite Adhesive Joints
The motivation for the increasing use of fiber-reinforced materials as structural components in the aeronautical and automobile industries is their improved strength to weight ratio. The most widely used technique for the joining of composite components is adhesive bonding. However, the use of bonded composite joints has been hampered by the lack of a reliable nondestructive testing (NDT) technique for the evaluation of the interfacial condition of the joints, which has an essential role in establishing the joint strength
Novel Marmoset (Callithrix jacchus) Model of Human Herpesvirus 6A and 6B Infections: Immunologic, Virologic and Radiologic Characterization
Human Herpesvirus 6 (HHV-6) is a ubiquitous virus with an estimated seroprevalence of 95% in the adult population. HHV-6 is associated with several neurologic disorders, including multiple sclerosis, an inflammatory demyelinating disease affecting the CNS. Animal models of HHV-6 infection would help clarify its role in human disease but have been slow to develop because rodents lack CD46, the receptor for cellular entry. Therefore, we investigated the effects of HHV-6 infections in a non-human primate, the common marmoset Callithrix jacchus. We inoculated a total of 12 marmosets with HHV-6A and HHV-6B intravenously and HHV-6A intranasally. Animals were monitored for 25 weeks post-inoculation clinically, immunologically and by MRI. Marmosets inoculated with HHV-6A intravenously exhibited neurologic symptoms and generated virus-specific antibody responses, while those inoculated intravenously with HHV-6B were asymptomatic and generated comparatively lower antibody responses. Viral DNA was detected at a low frequency in paraffin-embedded CNS tissue of a subset of marmosets inoculated with HHV-6A and HHV-6B intravenously. When different routes of HHV-6A inoculation were compared, intravenous inoculation resulted in virus-specific antibody responses and infrequent detection of viral DNA in the periphery, while intranasal inoculation resulted in negligible virus-specific antibody responses and frequent detection of viral DNA in the periphery. Moreover, marmosets inoculated with HHV-6A intravenously exhibited neurologic symptoms, while marmosets inoculated with HHV-6A intranasally were asymptomatic. We demonstrate that a marmoset model of HHV-6 infection can serve to further define the contribution of this ubiquitous virus to human neurologic disorders
Inhibition of Atrogin-1/MAFbx Mediated MyoD Proteolysis Prevents Skeletal Muscle Atrophy In Vivo
Ubiquitin ligase Atrogin1/Muscle Atrophy F-box (MAFbx) up-regulation is required for skeletal muscle atrophy but substrates and function during the atrophic process are poorly known. The transcription factor MyoD controls myogenic stem cell function and differentiation, and seems necessary to maintain the differentiated phenotype of adult fast skeletal muscle fibres. We previously showed that MAFbx mediates MyoD proteolysis in vitro. Here we present evidence that MAFbx targets MyoD for degradation in several models of skeletal muscle atrophy. In cultured myotubes undergoing atrophy, MAFbx expression increases, leading to a cytoplasmic-nuclear shuttling of MAFbx and a selective suppression of MyoD. Conversely, transfection of myotubes with sh-RNA-mediated MAFbx gene silencing (shRNAi) inhibited MyoD proteolysis linked to atrophy. Furthermore, overexpression of a mutant MyoDK133R lacking MAFbx-mediated ubiquitination prevents atrophy of mouse primary myotubes and skeletal muscle fibres in vivo. Regarding the complex role of MyoD in adult skeletal muscle plasticity and homeostasis, its rapid suppression by MAFbx seems to be a major event leading to skeletal muscle wasting. Our results point out MyoD as the second MAFbx skeletal muscle target by which powerful therapies could be developed
In vivo MRI is sensitive to remyelination in a nonhuman primate model of multiple sclerosis
Remyelination is crucial to recover from inflammatory demyelination in multiple sclerosis (MS). Investigating remyelination in vivo using magnetic resonance imaging (MRI) is difficult in MS, where collecting serial short-interval scans is challenging. Using experimental autoimmune encephalomyelitis (EAE) in common marmosets, a model of MS that recapitulates focal cerebral inflammatory demyelinating lesions, we investigated whether MRI is sensitive to, and can characterize, remyelination. In six animals followed with multisequence 7 T MRI, 31 focal lesions, predicted to be demyelinated or remyelinated based on signal intensity on proton density-weighted images, were subsequently assessed with histopathology. Remyelination occurred in four of six marmosets and 45% of lesions. Radiological-pathological comparison showed that MRI had high statistical sensitivity (100%) and specificity (90%) for detecting remyelination. This study demonstrates the prevalence of spontaneous remyelination in marmoset EAE and the ability of in vivo MRI to detect it, with implications for preclinical testing of pro-remyelinating agents
Mathematical Manipulative Models: In Defense of Beanbag Biology
Mathematical manipulative models have had a long history of influence in biological research and in secondary school education, but they are frequently neglected in undergraduate biology education. By linking mathematical manipulative models in a four-step process-1) use of physical manipulatives, 2) interactive exploration of computer simulations, 3) derivation of mathematical relationships from core principles, and 4) analysis of real data sets-we demonstrate a process that we have shared in biological faculty development workshops led by staff from the BioQUEST Curriculum Consortium over the past 24 yr. We built this approach based upon a broad survey of literature in mathematical educational research that has convincingly demonstrated the utility of multiple models that involve physical, kinesthetic learning to actual data and interactive simulations. Two projects that use this approach are introduced: The Biological Excel Simulations and Tools in Exploratory, Experiential Mathematics (ESTEEM) Project (http://bioquest.org/esteem) and Numerical Undergraduate Mathematical Biology Education (NUMB3R5 COUNT; http://bioquest.org/numberscount). Examples here emphasize genetics, ecology, population biology, photosynthesis, cancer, and epidemiology. Mathematical manipulative models help learners break through prior fears to develop an appreciation for how mathematical reasoning informs problem solving, inference, and precise communication in biology and enhance the diversity of quantitative biology education
- …