191 research outputs found

    Cluster formation in quantum critical systems

    Full text link
    The presence of magnetic clusters has been verified in both antiferromagnetic and ferromagnetic quantum critical systems. We review some of the strongest evidence for strongly doped quantum critical systems (Ce(Ru0.24_{0.24}Fe0.76_{0.76})2_2Ge2_2) and we discuss the implications for the response of the system when cluster formation is combined with finite size effects. In particular, we discuss the change of universality class that is observed close to the order-disorder transition. We detail the conditions under which clustering effects will play a significant role also in the response of stoichiometric systems and their experimental signature.Comment: 5 pages; 2 figures; Internation Conference on Strongly Correlated Electron System

    Understanding migrants in COVID-19 counting: Rethinking the data-(in)visibility nexus

    Get PDF
    none3siThe COVID-19 pandemic confronts society with a dilemma between (in)visibility, security, and care. While invisibility might be sought by unregistered and undocumented people, being counted and thus visible during a pandemic is a precondition of existence and care. This article asks whether and how unregistered populations like undocumented migrants should be included in statistics and other “counting” exercises devised to track virus diffusion and its impact. In particular, the paper explores how such inclusion can be just, given that for unregistered people visibility is often associated with surveillance. It also reflects on how policymaking can act upon the relationship between data, visibility, and populations in pragmatic terms. Conversing with science and technology studies and critical data studies, the paper frames the dilemma between (in)visibility and care as an issue of sociotechnical nature and identifies four criteria linked to the sociotechnical characteristics of the data infrastructure enabling visibility. It surveys “counting” initiatives targeting unregistered and undocumented populations undertaken by European countries in the aftermath of the pandemic, and illustrates the medical, economic, and social consequences of invisibility. On the basis of our analysis, we outline four scenarios that articulate the visibility/invisibility binary in novel, nuanced terms, and identify in the “de facto inclusion” scenario the best option for both migrants and the surrounding communities. Finally, we offer policy recommendations to avoid surveillance and overreach and promote instead a more just “de facto” civil inclusion of undocumented populations.openPelizza, Annalisa; Milan, Stefania; Lausberg, YorenPelizza, Annalisa; Milan, Stefania; Lausberg, Yore

    Huge First-Order Metamagnetic Transition in the Paramagnetic Heavy-Fermion System CeTiGe

    Full text link
    We report on the observation of large, step-like anomalies in the magnetization (ΔM=0.74\Delta M = 0.74\,μB\mu_{\rm B}/Ce), in the magnetostriction (Δl/l0=2.0103\Delta l/l_{0} = 2.0 \cdot 10^{-3}), and in the magnetoresistance in polycrystals of the paramagnetic heavy-fermion system CeTiGe at a critical magnetic field μ0Hc\mu_0 H_c \approx 12.5\,T at low temperatures. The size of these anomalies is much larger than those reported for the prototypical heavy-fermion metamagnet CeRu2_2Si2_2. Furthermore, hysteresis between increasing and decreasing field data indicate a real thermodynamic, first-order type of phase transition, in contrast to the crossover reported for CeRu2_2Si2_2. Analysis of the resistivity data shows a pronounced decrease of the electronic quasiparticle mass across HcH_c. These results establish CeTiGe as a new metamagnetic Kondo-lattice system, with an exceptionally large, metamagnetic transition of first-order type at a moderate field.Comment: 5 pages, 4 figure

    Evidence for a Kondo destroying quantum critical point in YbRh2Si2

    Full text link
    The heavy-fermion metal YbRh2_{2}Si2_{2} is a weak antiferromagnet below TN=0.07T_{N} = 0.07 K. Application of a low magnetic field Bc=0.06B_{c} = 0.06 T (c\perp c) is sufficient to continuously suppress the antiferromagnetic (AF) order. Below T10T \approx 10 K, the Sommerfeld coefficient of the electronic specific heat γ(T)\gamma(T) exhibits a logarithmic divergence. At T<0.3T < 0.3 K, γ(T)Tϵ\gamma(T) \sim T^{-\epsilon} (ϵ:0.30.4\epsilon: 0.3 - 0.4), while the electrical resistivity ρ(T)=ρ0+aT\rho(T) = \rho_{0} + aT (ρ0\rho_{0}: residual resistivity). Upon extrapolating finite-TT data of transport and thermodynamic quantities to T=0T = 0, one observes (i) a vanishing of the "Fermi surface crossover" scale T(B)T^{*}(B), (ii) an abrupt jump of the initial Hall coefficient RH(B)R_{H}(B) and (iii) a violation of the Wiedemann Franz law at B=BcB = B_{c}, the field-induced quantum critical point (QCP). These observations are interpreted as evidence of a critical destruction of the heavy quasiparticles, i.e., propagating Kondo singlets, at the QCP of this material.Comment: 20 pages, 8 figures, SCES 201

    Interplay between Kondo suppression and Lifshitz transitions in YbRh2_2Si2_2 at high magnetic fields

    Full text link
    We investigate the magnetic field dependent thermopower, thermal conductivity, resistivity and Hall effect in the heavy fermion metal YbRh2Si2. In contrast to reports on thermodynamic measurements, we find in total three transitions at high fields, rather than a single one at 10 T. Using the Mott formula together with renormalized band calculations, we identify Lifshitz transitions as their origin. The predictions of the calculations show that all experimental results rely on an interplay of a smooth suppression of the Kondo effect and the spin splitting of the flat hybridized bands.Comment: 5 pages, 4 figure

    Avoided ferromagnetic quantum critical point: Unusual short-range ordered state in CeFePO

    Get PDF
    Cerium 4f electronic spin dynamics in single crystals of the heavy-fermion system CeFePO is studied by means of ac-susceptibility, specific heat and muon-spin relaxation (μ\muSR). Short-range static magnetism occurs below the freezing temperature Tg ~ 0.7 K, which prevents the system from accessing the putative ferromagnetic quantum critical point. In the μ\muSR, the sample-averaged muon asymmetry function is dominated by strongly inhomogeneous spin fluctuations below 10 K and exhibits a characteristic time-field scaling relation expected from glassy spin dynamics, strongly evidencing cooperative and critical spin fluctuations. The overall behavior can be ascribed neither to canonical spin glasses nor other disorder-driven mechanisms.Comment: 5 pages, 4 figures, accepted for publication in Physical Review Letters, Link: http://prl.aps.org/accepted/6207bYdaGef1483c419928305372ce2d4419eb96

    Quantum Tricritical Points in NbFe2_2

    Get PDF
    Quantum critical points (QCPs) emerge when a 2nd order phase transition is suppressed to zero temperature. In metals the quantum fluctuations at such a QCP can give rise to new phases including unconventional superconductivity. Whereas antiferromagnetic QCPs have been studied in considerable detail ferromagnetic (FM) QCPs are much harder to access. In almost all metals FM QCPs are avoided through either a change to 1st order transitions or through an intervening spin-density-wave (SDW) phase. Here, we study the prototype of the second case, NbFe2_2. We demonstrate that the phase diagram can be modelled using a two-order-parameter theory in which the putative FM QCP is buried within a SDW phase. We establish the presence of quantum tricritical points (QTCPs) at which both the uniform and finite qq susceptibility diverge. The universal nature of our model suggests that such QTCPs arise naturally from the interplay between SDW and FM order and exist generally near a buried FM QCP of this type. Our results promote NbFe2_2 as the first example of a QTCP, which has been proposed as a key concept in a range of narrow-band metals, including the prominent heavy-fermion compound YbRh2_2Si2_2.Comment: 21 pages including S

    Interplay between unconventional superconductivity and heavy-fermion quantum criticality: CeCu2_2Si2_2 versus YbRh2_2Si2_2

    Get PDF
    In this paper the low-temperature properties of two isostructural canonical heavy-fermion compounds are contrasted with regards to the interplay between antiferromagnetic (AF) quantum criticality and superconductivity. For CeCu2_2Si2_2, fully-gapped d-wave superconductivity forms in the vicinity of an itinerant three-dimensional heavy-fermion spin-density-wave (SDW) quantum critical point (QCP). Inelastic neutron scattering results highlight that both quantum critical SDW fluctuations as well as Mott-type fluctuations of local magnetic moments contribute to the formation of Cooper pairs in CeCu2_2Si2_2. In YbRh2_2Si2_2, superconductivity appears to be suppressed at T 10T\gtrsim~10 mK by AF order (TNT_N = 70 mK). Ultra-low temperature measurements reveal a hybrid order between nuclear and 4f-electronic spins, which is dominated by the Yb-derived nuclear spins, to develop at TAT_A slightly above 2 mK. The hybrid order turns out to strongly compete with the primary 4f-electronic order and to push the material towards its QCP. Apparently, this paves the way for heavy-fermion superconductivity to form at TcT_c = 2 mK. Like the pressure - induced QCP in CeRhIn5_5, the magnetic field - induced one in YbRh2_2Si2_2 is of the local Kondo-destroying variety which corresponds to a Mott-type transition at zero temperature. Therefore, these materials form the link between the large family of about fifty low-TT unconventional heavy - fermion superconductors and other families of unconventional superconductors with higher TcT_cs, notably the doped Mott insulators of the cuprates, organic charge-transfer salts and some of the Fe-based superconductors. Our study suggests that heavy-fermion superconductivity near an AF QCP is a robust phenomenon.Comment: 30 pages, 7 Figures, Accepted for publication in Philosophical Magazin

    Ferromagnetic Quantum Criticality in the Quasi-One-Dimensional Heavy Fermion Metal YbNi4P2

    Full text link
    We present a new Kondo-lattice system, YbNi4P2, which is a clean heavy-fermion metal with a severely reduced ferromagnetic ordering temperature at T_C=0.17K, evidenced by distinct anomalies in susceptibility, specific-heat, and resistivity measurements. The ferromagnetic nature of the transition, with only a small ordered moment of ~0.05mu_B, is established by a diverging susceptibility at T_C with huge absolute values in the ferromagnetically ordered state, severely reduced by small magnetic fields. Furthermore, YbNi4P2 is a stoichiometric system with a quasi-one-dimensional crystal and electronic structure and strong correlation effects which dominate the low temperature properties. This is reflected by a stronger-than-logarithmically diverging Sommerfeld coefficient and a linear-in-T resistivity above T_C which cannot be explained by any current theoretical predictions. These exciting characteristics are unique among all correlated electron systems and make this an interesting material for further in-depth investigations.Comment: 14 pages, 6 figure
    corecore