44 research outputs found
Fibroblast Growth Factor-2 Primes Human Mesenchymal Stem Cells for Enhanced Chondrogenesis
Human mesenchymal stem cells (hMSCs) are multipotent cells capable of differentiating into a variety of mature cell types, including osteoblasts, adipocytes and chondrocytes. It has previously been shown that, when expanded in medium supplemented with fibroblast growth factor-2 (FGF-2), hMSCs show enhanced chondrogenesis (CG). Previous work concluded that the enhancement of CG could be attributed to the selection of a cell subpopulation with inherent chondrogenic potential. In this study, we show that FGF-2 pretreatment actually primed hMSCs to undergo enhanced CG by increasing basal Sox9 protein levels. Our results show that Sox9 protein levels were elevated within 30 minutes of exposure to FGF-2 and progressively increased with longer exposures. Further, we show using flow cytometry that FGF-2 increased Sox9 protein levels per cell in proliferating and non-proliferating hMSCs, strongly suggesting that FGF-2 primes hMSCs for subsequent CG by regulating Sox9. Indeed, when hMSCs were exposed to FGF-2 for 2 hours and subsequently differentiated into the chondrogenic lineage using pellet culture, phosphorylated-Sox9 (pSox9) protein levels became elevated and ultimately resulted in an enhancement of CG. However, small interfering RNA (siRNA)-mediated knockdown of Sox9 during hMSC expansion was unable to negate the prochondrogenic effects of FGF-2, suggesting that the FGF-2-mediated enhancement of hMSC CG is only partly regulated through Sox9. Our findings provide new insights into the mechanism by which FGF-2 regulates predifferentiation hMSCs to undergo enhanced CG
A cartilage tissue engineering approach combining starch-polycaprolactone fibre mesh scaffolds with bovine articular chondrocytes
In the present work we originally tested the suitability
of corn starch-polycaprolactone (SPCL) scaffolds for
pursuing a cartilage tissue engineering approach. Bovine articular
chondrocytes were seeded on SPCL scaffolds under
dynamic conditions using spinner flasks (total of 4 scaffolds
per spinner flask using cell suspensions of 0.5Ă106 cells/ml)
and cultured under orbital agitation for a total of 6 weeks.
Poly(glycolic acid) (PGA) non-woven scaffolds and bovine
native articular cartilage were used as standard controls for
the conducted experiments. PGA is a kind of standard in
tissue engineering approaches and it was used as a control
in that sense. The tissue engineered constructs were characterized
at different time periods by scanning electron microscopy
(SEM), hematoxylin-eosin (H&E) and toluidine
blue stainings, immunolocalisation of collagen types I and II,
and dimethylmethylene blue (DMB) assay for glycosaminoglycans
(GAG) quantification assay. SEM results for SPCL
constructs showed that the chondrocytes presented normal
morphological features, with extensive cells presence at the
surface of the support structures, and penetrating the scaffolds
pores. These observations were further corroborated
by H&E staining. Toluidine blue and immunohistochemistry
exhibited extracellular matrix deposition throughout the 3D structure. Glycosaminoglycans, and collagen types I and II
were detected. However, stronger staining for collagen type
II was observed when compared to collagen type I. The PGA
constructs presented similar features toSPCLat the end of the
6 weeks. PGA constructs exhibited higher amounts of matrix
glycosaminoglycans when compared to the SPCL scaffolds.
However, we also observed a lack of tissue in the central
area of the PGA scaffolds. Reasons for these occurrences
may include inefficient cells penetration, necrosis due to high
cell densities, or necrosis related with acidic by-products
degradation. Such situation was not detected in the SPCL
scaffolds, indicating the much better biocompatibility of the
starch based scaffolds
Bone tissue engineering by using a combination of polymer/Bioglass composites with human adipose-derived stem cells.
Translational research in bone tissue engineering is essential for âbench to bedsideâ patient benefit. However, the ideal combination of stem cells and biomaterial scaffolds for bone repair/regeneration is still unclear. The aim of this study is to investigate the osteogenic capacity of a combination of poly(DL-lactic acid) (PDLLA) porous foams containing 5 wt% and 40 wt% of Bioglass particles with human adipose-derived stem cells (ADSCs) in vitro and in vivo. Live/dead fluorescent markers, confocal microscopy and scanning electron microscopy showed that PDLLA/Bioglass porous scaffolds supported ADSC attachment, growth and osteogenic differentiation, as confirmed by enhanced alkaline phosphatase (ALP) activity. Higher Bioglass content of the PDLLA foams increased ALP activity compared with the PDLLA only group. Extracellular matrix deposition after 8 weeks in the in vitro cultures was evident by Alcian blue/Sirius red staining. In vivo bone formation was assessed by using scaffold/ADSC constructs in diffusion chambers transplanted intraperitoneally into nude mice and recovered after 8 weeks. Histological and immunohistochemical assays indicated significant new bone formation in the 40 wt% and 5 wt% Bioglass constructs compared with the PDLLA only group. Thus, the combination of a well-developed biodegradable bioactive porous PDLLA/Bioglass composite scaffold with a high-potential stem cell source (human ADSCs) could be a promising approach for bone regeneration in a clinical setting
Behaviour of moderately differentiated osteoblast-like cells cultured in contact with bioactive glasses
Bioactive glasses have been shown to stimulate osteogenesis both in vivo and in vitro. However, the molecular mechanisms underlying this process are still poorly understood. In this study, we have investigated the behaviour of osteoblast-like cells (MG63), cultured in the presence of bioglass particles. Three types of granules were used: 45S5registered bioactive glass, 45S5registered granules preincubated in tris buffer and 60S non-reactive glass, used as control. Phase contrast microscopy permitted step-by-step visualization of cell cultures in contact with the particles. Ultrastructural observations of undecalcified sections revealed direct contacts of the cells and an electron-dense layer located at the periphery of the material. Protein synthesis was evaluated biochemically and showed a gradual increase throughout the culture time in the three types of cultures. Alkaline phosphatase was detected in situ, in clusters of packed cells either in contact with the material or in the background cell layer. Semi-quantitative RT-PCR analysis of the main osteoblastic markers showed that gene expression was maintained in all three cultures. The fact that osteocalcin was not detected, supports the fact that the MG63 cell line is composed of less differentiated osteogenic cells rather than mature osteoblasts. We also demonstrated for the first time in this cell line, the expression of Msx-2, Dlx-3 and Dlx-7 homeogenes, known to regulate in vivo foetal skeletogenesis as well as adult skeletal regeneration. However, no significant differences could be recognised in the expression pattern of bone markers between the three types of cultures. Yet these preliminary results indicate that bioactive glasses provided a suitable environment for the growth and proliferation of osteoblasts in vitro, since no drastic changes in phenotype expression of pre-osteoblasts was noted
Correction to: Using decision fusion methods to improve outbreak detection in disease surveillance
International audienc
Using decision fusion methods to improve outbreak detection in disease surveillance
Abstract Background When outbreak detection algorithms (ODAs) are considered individually, the task of outbreak detection can be seen as a classification problem and the ODA as a sensor providing a binary decision (outbreak yes or no) for each day of surveillance. When they are considered jointly (in cases where several ODAs analyze the same surveillance signal), the outbreak detection problem should be treated as a decision fusion (DF) problem of multiple sensors. Methods This study evaluated the benefit for a decisions support system of using DF methods (fusing multiple ODA decisions) compared to using a single method of outbreak detection. For each day, we merged the decisions of six ODAs using 5 DF methods (two voting methods, logistic regression, CART and Bayesian network - BN). Classical metrics of accuracy, prediction and timelines were used during the evaluation steps. Results In our results, we observed the greatest gain (77%) in positive predictive value compared to the best ODA if we used DF methods with a learning step (BN, logistic regression, and CART). Conclusions To identify disease outbreaks in systems using several ODAs to analyze surveillance data, we recommend using a DF method based on a Bayesian network. This method is at least equivalent to the best of the algorithms considered, regardless of the situation faced by the system. For those less familiar with this kind of technique, we propose that logistic regression be used when a training dataset is available