373 research outputs found

    Kinetic Ising model in an oscillating field: Finite-size scaling at the dynamic phase transition

    Full text link
    We study hysteresis for a two-dimensional, spin-1/2, nearest-neighbor, kinetic Ising ferromagnet in an oscillating field, using Monte Carlo simulations. The period-averaged magnetization is the order parameter for a proposed dynamic phase transition (DPT). To quantify the nature of this transition, we present the first finite-size scaling study of the DPT for this model. Evidence of a diverging correlation length is given, and we provide estimates of the transition frequency and the critical indices β\beta, γ\gamma and ν\nu.Comment: Accepted by Physical Review Letters. 9 page

    Kinetic Ising System in an Oscillating External Field: Stochastic Resonance and Residence-Time Distributions

    Full text link
    Experimental, analytical, and numerical results suggest that the mechanism by which a uniaxial single-domain ferromagnet switches after sudden field reversal depends on the field magnitude and the system size. Here we report new results on how these distinct decay mechanisms influence hysteresis in a two-dimensional nearest-neighbor kinetic Ising model. We present theoretical predictions supported by numerical simulations for the frequency dependence of the probability distributions for the hysteresis-loop area and the period-averaged magnetization, and for the residence-time distributions. The latter suggest evidence of stochastic resonance for small systems in moderately weak oscillating fields.Comment: Includes updated results for Fig.2 and minor text revisions to the abstract and text for clarit

    Nonequilibrium phase transition in the kinetic Ising model: Is transition point the maximum lossy point ?

    Full text link
    The nonequilibrium dynamic phase transition, in the kinetic Ising model in presence of an oscillating magnetic field, has been studied both by Monte Carlo simulation (in two dimension) and by solving the meanfield dynamical equation of motion for the average magnetization. The temperature variations of hysteretic loss (loop area) and the dynamic correlation have been studied near the transition point. The transition point has been identified as the minimum-correlation point. The hysteretic loss becomes maximum above the transition point. An analytical formulation has been developed to analyse the simulation results. A general relationship among hysteresis loop area, dynamic order parameter and dynamic correlation has also been developed.Comment: 8 pages Revtex and 4 Postscript figures; To appear in Phys. Rev.

    Spatial stochastic resonance in 1D Ising systems

    Full text link
    The 1D Ising model is analytically studied in a spatially periodic and oscillatory external magnetic field using the transfer-matrix method. For low enough magnetic field intensities the correlation between the external magnetic field and the response in magnetization presents a maximum for a given temperature. The phenomenon can be interpreted as a resonance phenomenon induced by the stochastic heatbath. This novel "spatial stochastic resonance" has a different origin from the classical stochastic resonance phenomenon.Comment: REVTex, 5 pages, 3 figure

    Hysteresis and the dynamic phase transition in thin ferromagnetic films

    Full text link
    Hysteresis and the non-equilibrium dynamic phase transition in thin magnetic films subject to an oscillatory external field have been studied by Monte Carlo simulation. The model under investigation is a classical Heisenberg spin system with a bilinear exchange anisotropy in a planar thin film geometry with competing surface fields. The film exhibits a non-equilibrium phase transition between dynamically ordered and dynamically disordered phases characterized by a critical temperature Tcd, whose location of is determined by the amplitude H0 and frequency w of the applied oscillatory field. In the presence of competing surface fields the critical temperature of the ferromagnetic-paramagnetic transition for the film is suppressed from the bulk system value, Tc, to the interface localization-delocalization temperature Tci. The simulations show that in general Tcd < Tci for the model film. The profile of the time-dependent layer magnetization across the film shows that the dynamically ordered and dynamically disordered phases coexist within the film for T < Tcd. In the presence of competing surface fields, the dynamically ordered phase is localized at one surface of the film.Comment: PDF file, 21 pages including 8 figure pages; added references,typos added; to be published in PR

    Magnetic Behavior of a Mixed Ising Ferrimagnetic Model in an Oscillating Magnetic Field

    Full text link
    The magnetic behavior of a mixed Ising ferrimagnetic system on a square lattice, in which the two interpenetrating square sublattices have spins +- 1/2 and spins +-1,0, in the presence of an oscillating magnetic field has been studied with Monte Carlo techniques. The model includes nearest and next-nearest neighbor interactions, a crystal field and the oscillating external field. By studying the hysteretic response of this model to an oscillating field we found that it qualitatively reproduces the increasing of the coercive field at the compensation temperature observed in real ferrimagnets, a crucial feature for magneto-optical applications. This behavior is basically independent of the frequency of the field and the size of the system. The magnetic response of the system is related to a dynamical transition from a paramagnetic to a ferromagnetic phase and to the different temperature dependence of the relaxation times of both sublattices.Comment: 10 figures. To be published in Phys.Rev

    Entropic sampling dynamics of the globally-coupled kinetic Ising model

    Full text link
    The entropic sampling dynamics based on the reversible information transfer to and from the environment is applied to the globally coupled Ising model in the presence of an oscillating magnetic field. When the driving frequency is low enough, coherence between the magnetization and the external magnetic field is observed; such behavior tends to weaken with the system size. The time-scale matching between the intrinsic time scale, defined in the absence of the external magnetic field, and the extrinsic time scale, given by the inverse of the driving frequency, is used to explain the observed coherence behavior.Comment: 8 page

    Dynamic Phase Transition, Universality, and Finite-size Scaling in the Two-dimensional Kinetic Ising Model in an Oscillating Field

    Full text link
    We study the two-dimensional kinetic Ising model below its equilibrium critical temperature, subject to a square-wave oscillating external field. We focus on the multi-droplet regime where the metastable phase decays through nucleation and growth of many droplets of the stable phase. At a critical frequency, the system undergoes a genuine non-equilibrium phase transition, in which the symmetry-broken phase corresponds to an asymmetric stationary limit cycle for the time-dependent magnetization. We investigate the universal aspects of this dynamic phase transition at various temperatures and field amplitudes via large-scale Monte Carlo simulations, employing finite-size scaling techniques adopted from equilibrium critical phenomena. The critical exponents, the fixed-point value of the fourth-order cumulant, and the critical order-parameter distribution all are consistent with the universality class of the two-dimensional equilibrium Ising model. We also study the cross-over from the multi-droplet to the strong-field regime, where the transition disappears

    Stationary Properties of a Randomly Driven Ising Ferromagnet

    Full text link
    We consider the behavior of an Ising ferromagnet obeying the Glauber dynamics under the influence of a fast switching, random external field. Analytic results for the stationary state are presented in mean-field approximation, exhibiting a novel type of first order phase transition related to dynamic freezing. Monte Carlo simulations performed on a quadratic lattice indicate that many features of the mean field theory may survive the presence of fluctuations.Comment: 5 pages in RevTex format, 7 eps/ps figures, send comments to "mailto:[email protected]", submitted to PR

    Microscopic elasticity of complex systems

    Full text link
    Lecture Notes for the Erice Summer School 2005 Computer Simulations in Condensed Matter: from Materials to Chemical Biology. Perspectives in celebration of the 65th Birthday of Mike Klein organized by Kurt Binder, Giovanni Ciccotti and Mauro Ferrari
    corecore