766 research outputs found

    Luttinger-liquid-like transport in long InSb nanowires

    Full text link
    Long nanowires of degenerate semiconductor InSb in asbestos matrix (wire diameter is around 50 \AA, length 0.1 - 1 mm) were prepared. Electrical conduction of these nanowires is studied over a temperature range 1.5 - 350 K. It is found that a zero-field electrical conduction is a power function of the temperature G∝TαG\propto T^\alpha with the typical exponent α≈4\alpha \approx 4. Current-voltage characteristics of such nanowires are found to be nonlinear and at sufficiently low temperatures follows the power law I∝VÎČI\propto V^\beta. It is shown that the electrical conduction of these nanowires cannot be accounted for in terms of ordinary single-electron theories and exhibits features expected for impure Luttinger liquid. For a simple approximation of impure LL as a pure one broken into drops by weak links, the estimated weak-link density is around 103−10410^3-10^4 per cm.Comment: 5 pages, 2 figure

    A New Limit on the Antiproton Lifetime

    Full text link
    Measurements of the cosmic ray pbar/p ratio are compared to predictions from an inhomogeneous disk-diffusion model of pbar production and propagation within the Galaxy, combined with a calculation of the modulation of the interstellar cosmic ray spectra as the particles propagate through the heliosphere to the Earth. The predictions agree with the observed pbar/p spectrum. Adding a finite pbar lifetime to the model, we obtain the limit tau_pbar > 0.8 Myr (90 % C.L.).Comment: 13 pages, 3 encapsulated Postscript figures, uses AASTeX; accepted by Astrophysical Journal; minor change

    Diffusion and Transport Coefficients in Synthetic Opals

    Full text link
    Opals are structures composed of the closed packing of spheres in the size range of nano-to-micro meter. They are sintered to create small necks at the points of contact. We have solved the diffusion problem in such structures. The relation between the diffusion coefficient and the termal and electrical conductivity makes possible to estimate the transport coefficients of opal structures. We estimate this changes as function of the neck size and the mean-free path of the carriers. The theory presented is also applicable to the diffusion problem in other periodic structures.Comment: Submitted to PR

    Effect of pressure on the polarized infrared optical response of quasi-one-dimensional LaTiO3.41_{3.41}

    Full text link
    The pressure-induced changes in the optical properties of the quasi-one-dimensional conductor LaTiO3.41_{3.41} were studied by polarization-dependent mid-infrared micro-spectroscopy at room temperature. For the polarization of the incident radiation parallel to the conducting direction, the optical conductivity spectrum shows a pronounced mid-infrared absorption band, exhibiting a shift to lower frequencies and an increase in oscillator strength with increasing pressure. On the basis of its pressure dependence, interpretations of the band in terms of electronic transitions and polaronic excitations are discussed. Discontinuous changes in the optical response near 15 GPa are in agreement with a recently reported pressure-induced structural phase transition and indicate the onset of a dimensional crossover in this highly anisotropic system.Comment: 7 pages, 7 figure

    Polaron Transport in the Paramagnetic Phase of Electron-Doped Manganites

    Full text link
    The electrical resistivity, Hall coefficient, and thermopower as functions of temperature are reported for lightly electron-doped Ca(1-x)La(x)MnO(3)(0 <= x <= 0.10). Unlike the case of hole-doped ferromagnetic manganites, the magnitude and temperature dependence of the Hall mobility for these compounds is found to be inconsistent with small-polaron theory. The transport data are better described by the Feynman polaron theory and imply intermediate coupling (alpha \~ 5.4) with a band effective mass, m*~4.3 m_0, and a polaron mass, m_p ~ 10 m_0.Comment: 7 pp., 7 Fig.s, to be published, PR

    Ion Source DECRIS-3

    Get PDF
    The ECR ion source DECRIS-3 is the copy of the mVINIS ion source which was designed and built in Dubna for the TESLA Accelerator Installation (Belgrade, Yugoslavia) in 1997. The assembly of the source was completely finished in the end of 1998 and then it was installed at the FLNR ECR test bench. The source was successfully tested with some gases and metals by using the MIVOC technique. In nearest future the source will be capable of ECR plasma heating using two different frequencies simultaneously. We are also going to use the DECRIS-3 ion source to design 1+ -> n+ technique for the DRIBs (Dubna Radioactive Ion Beams) project

    Study of microflora change and preservation of vitamins b2 and e of grain in the process of steaming and flaking

    Get PDF
    The study of the process of moisture-thermal treatment of grain crops: wheat, oats, barley, corn, peas, bran and others was carried out in the work. The drying process examination was done on a drying plant located in the testing laboratory of JSC "Research and Production Center" All-Russian Research Institute of the Feed Industry ". Studies of the grain qualitative characteristics were carried out in the accredited testing laboratory of JSC "RPC" ARSRIFI", which allows carrying physical- and chemical analysis, mycotoxicology and microbiology of plant raw materials

    Production of Ions of Metals with an ECR Ion Source at FLNR (JINR) cyclotrons

    Get PDF
    Two ECR ion sources : DECRIS-14-2 and ECR4M are presently in permanent operation at the FLNR cyclotrons U400M and U400, correspondingly. During last two years the major effort were made in production of high current stable ion beams of solids with the relatively low melting point in the mass range from Li to Bi. Both the evaporator and MIVOC methods were used. Among the solids such an exotic beam as 48Ca was produced at the U400 cyclotron with high efficiency. The main results on production of solid ions will be reported

    Antimatter research in Space

    Get PDF
    Two of the most compelling issues facing astrophysics and cosmology today are to understand the nature of the dark matter that pervades the universe and to understand the apparent absence of cosmological antimatter. For both issues, sensitive measurements of cosmic-ray antiprotons and positrons, in a wide energy range, are crucial. Many different mechanisms can contribute to antiprotons and positrons production, ranging from conventional reactions up to exotic processes like neutralino annihilation. The open problems are so fundamental (i.e.: is the universe symmetric in matter and antimatter ?) that experiments in this field will probably be of the greatest interest in the next years. Here we will summarize the present situation, showing the different hypothesis and models and the experimental measurements needed to lead to a more established scenario.Comment: 10 pages, 7 figures, Invited talk at the 18th European Cosmic Ray Symposium, Moscow, July 2002, submitted to Journal of Physics

    Perturbed Three Vortex Dynamics

    Full text link
    It is well known that the dynamics of three point vortices moving in an ideal fluid in the plane can be expressed in Hamiltonian form, where the resulting equations of motion are completely integrable in the sense of Liouville and Arnold. The focus of this investigation is on the persistence of regular behavior (especially periodic motion) associated to completely integrable systems for certain (admissible) kinds of Hamiltonian perturbations of the three vortex system in a plane. After a brief survey of the dynamics of the integrable planar three vortex system, it is shown that the admissible class of perturbed systems is broad enough to include three vortices in a half-plane, three coaxial slender vortex rings in three-space, and `restricted' four vortex dynamics in a plane. Included are two basic categories of results for admissible perturbations: (i) general theorems for the persistence of invariant tori and periodic orbits using Kolmogorov-Arnold-Moser and Poincare-Birkhoff type arguments; and (ii) more specific and quantitative conclusions of a classical perturbation theory nature guaranteeing the existence of periodic orbits of the perturbed system close to cycles of the unperturbed system, which occur in abundance near centers. In addition, several numerical simulations are provided to illustrate the validity of the theorems as well as indicating their limitations as manifested by transitions to chaotic dynamics.Comment: 26 pages, 9 figures, submitted to the Journal of Mathematical Physic
    • 

    corecore