30,260 research outputs found

    Single-Quadrature Continuous-Variable Quantum Key Distribution

    Get PDF
    Most continuous-variable quantum key distribution schemes are based on the Gaussian modulation of coherent states followed by continuous quadrature detection using homodyne detectors. In all previous schemes, the Gaussian modulation has been carried out in conjugate quadratures thus requiring two independent modulators for their implementations. Here, we propose and experimentally test a largely simplified scheme in which the Gaussian modulation is performed in a single quadrature. The scheme is shown to be asymptotically secure against collective attacks, and considers asymmetric preparation and excess noise. A single-quadrature modulation approach renders the need for a costly amplitude modulator unnecessary, and thus facilitates commercialization of continuous-variable quantum key distribution.Comment: 13 pages, 7 figure

    Continuous Variable Quantum Key Distribution with a Noisy Laser

    Get PDF
    Existing experimental implementations of continuous-variable quantum key distribution require shot-noise limited operation, achieved with shot-noise limited lasers. However, loosening this requirement on the laser source would allow for cheaper, potentially integrated systems. Here, we implement a theoretically proposed prepare-and-measure continuous-variable protocol and experimentally demonstrate the robustness of it against preparation noise stemming for instance from technical laser noise. Provided that direct reconciliation techniques are used in the post-processing we show that for small distances large amounts of preparation noise can be tolerated in contrast to reverse reconciliation where the key rate quickly drops to zero. Our experiment thereby demonstrates that quantum key distribution with non-shot-noise limited laser diodes might be feasible.Comment: 10 pages, 6 figures. Corrected plots for reverse reconciliatio

    Assessments of macroscopicity for quantum optical states

    Full text link
    With the slow but constant progress in the coherent control of quantum systems, it is now possible to create large quantum superpositions. There has therefore been an increased interest in quantifying any claims of macroscopicity. We attempt here to motivate three criteria which we believe should enter in the assessment of macroscopic quantumness: The number of quantum fluctuation photons, the purity of the states, and the ease with which the branches making up the state can be distinguished

    Tomography of a displacement photon counter for discrimination of single-rail optical qubits

    Get PDF
    We investigate the performance of a Kennedy receiver, which is known as a beneficial tool in optical coherent communications, to the quantum state discrimination of the two superpositions of vacuum and single photon states corresponding to the σ^x\hat\sigma_x eigenstates in the single-rail encoding of photonic qubits. We experimentally characterize the Kennedy receiver in vacuum-single photon two-dimensional space using quantum detector tomography and evaluate the achievable discrimination error probability from the reconstructed measurement operators. We furthermore derive the minimum error rate obtainable with Gaussian transformations and homodyne detection. Our proof of principle experiment shows that the Kennedy receiver can achieve a discrimination error surpassing homodyne detection

    Architecture and noise analysis of continuous variable quantum gates using two-dimensional cluster states

    Full text link
    Due to its unique scalability potential, continuous variable quantum optics is a promising platform for large scale quantum computing and quantum simulation. In particular, very large cluster states with a two-dimensional topology that are suitable for universal quantum computing and quantum simulation can be readily generated in a deterministic manner, and routes towards fault-tolerance via bosonic quantum error-correction are known. In this article we propose a complete measurement-based quantum computing architecture for the implementation of a universal set of gates on the recently generated two-dimensional cluster states [1,2]. We analyze the performance of the various quantum gates that are executed in these cluster states as well as in other two-dimensional cluster states (the bilayer-square lattice and quad-rail lattice cluster states [3,4]) by estimating and minimizing the associated stochastic noise addition as well as the resulting gate error probability. We compare the four different states and find that, although they all allow for universal computation, the quad-rail lattice cluster state performs better than the other three states which all exhibit similar performance

    W Plus Multiple Jets at the LHC with High Energy Jets

    Get PDF
    We study the production of a W boson in association with n hard QCD jets (for n>=2), with a particular emphasis on results relevant for the Large Hadron Collider (7 TeV and 8 TeV). We present predictions for this process from High Energy Jets, a framework for all-order resummation of the dominant contributions from wide-angle QCD emissions. We first compare predictions against recent ATLAS data and then shift focus to observables and regions of phase space where effects beyond NLO are expected to be large.Comment: 19 pages, 9 figure

    Super sensitivity and super resolution with quantum teleportation

    Get PDF
    We propose a method for quantum enhanced phase estimation based on continuous variable (CV) quantum teleportation. The phase shift probed by a coherent state can be enhanced by repeatedly teleporting the state back to interact with the phase shift again using a supply of two-mode squeezed vacuum states. In this way, both super resolution and super sensitivity can be obtained due to the coherent addition of the phase shift. The protocol enables Heisenberg limited sensitivity and super- resolution given sufficiently strong squeezing. The proposed method could be implemented with current or near-term technology of CV teleportation.Comment: 5 pagers, 3 figure

    A Hybrid Long-Distance Entanglement Distribution Protocol

    Full text link
    We propose a hybrid (continuous-discrete variable) quantum repeater protocol for distribution of entanglement over long distances. Starting from entangled states created by means of single-photon detection, we show how entangled coherent state superpositions, also known as `Schr\"odinger cat states', can be generated by means of homodyne detection of light. We show that near-deterministic entanglement swapping with such states is possible using only linear optics and homodyne detectors, and we evaluate the performance of our protocol combining these elements.Comment: 4 pages, 3 figure

    Complete elimination of information leakage in continuous-variable quantum communication channels

    Get PDF
    In all lossy communication channels realized to date, information is inevitably leaked to a potential eavesdropper. Here we present a communication protocol that does not allow for any information leakage to a potential eavesdropper in a purely lossy channel. By encoding information into a restricted Gaussian alphabet of squeezed states we show, both theoretically and experimentally, that the Holevo information between the eavesdropper and the intended recipient can be exactly zero in a purely lossy channel while minimized in a noisy channel. This result is of fundamental interest, but might also have practical implications in extending the distance of secure quantum key distribution.Comment: 9 pages, 5 figure
    • …
    corecore