4,323 research outputs found
Network-based ranking in social systems: three challenges
Ranking algorithms are pervasive in our increasingly digitized societies,
with important real-world applications including recommender systems, search
engines, and influencer marketing practices. From a network science
perspective, network-based ranking algorithms solve fundamental problems
related to the identification of vital nodes for the stability and dynamics of
a complex system. Despite the ubiquitous and successful applications of these
algorithms, we argue that our understanding of their performance and their
applications to real-world problems face three fundamental challenges: (i)
Rankings might be biased by various factors; (2) their effectiveness might be
limited to specific problems; and (3) agents' decisions driven by rankings
might result in potentially vicious feedback mechanisms and unhealthy systemic
consequences. Methods rooted in network science and agent-based modeling can
help us to understand and overcome these challenges.Comment: Perspective article. 9 pages, 3 figure
Multiplet Structures of BPS Solitons
There exist simple single-charge and multi-charge BPS p-brane solutions in
the D-dimensional maximal supergravities. From these, one can fill out orbits
in the charge vector space by acting with the global symmetry groups. We give a
classification of these orbits, and the associated cosets that parameterise
them.Comment: Latex, 34 pages, comments and reference adde
Massive Three-Dimensional Supergravity From R+R^2 Action in Six Dimensions
We obtain a three-parameter family of massive N=1 supergravities in three
dimensions from the 3-sphere reduction of an off-shell N=(1,0) six-dimensional
Poincare supergravity that includes a curvature squared invariant. The
three-dimensional theory contains an off-shell supergravity multiplet and an
on-shell scalar matter multiplet. We then generalise this in three dimensions
to an eight-parameter family of supergravities. We also find a duality
relationship between the six-dimensional theory and the N=(1,0) six-dimensional
theory obtained through a T^4 reduction of the heterotic string effective
action that includes the higher-order terms associated with the
supersymmetrisation of the anomaly-cancelling \tr(R\wedge R) term.Comment: Latex, 32 Pages, an equation is corrected, a few new equations and a
number of clarifying remarks are adde
Spherically Symmetric Solutions in Higher-Derivative Gravity
Extensions of Einstein gravity with quadratic curvature terms in the action
arise in most effective theories of quantised gravity, including string theory.
This article explores the set of static, spherically symmetric and
asymptotically flat solutions of this class of theories. An important element
in the analysis is the careful treatment of a Lichnerowicz-type `no-hair'
theorem. From a Frobenius analysis of the asymptotic small-radius behaviour,
the solution space is found to split into three asymptotic families, one of
which contains the classic Schwarzschild solution. These three families are
carefully analysed to determine the corresponding numbers of free parameters in
each. One solution family is capable of arising from coupling to a
distributional shell of matter near the origin; this family can then match on
to an asymptotically flat solution at spatial infinity without encountering a
horizon. Another family, with horizons, contains the Schwarzschild solution but
includes also non-Schwarzschild black holes. The third family of solutions
obtained from the Frobenius analysis is nonsingular and corresponds to `vacuum'
solutions. In addition to the three families identified from near-origin
behaviour, there are solutions that may be identified as `wormholes', which can
match symmetrically on to another sheet of spacetime at finite radius.Comment: 57 pages, 6 figures; version appearing in journal; minor corrections
and clarifications to v
From p-branes to Cosmology
We study the relationship between static p-brane solitons and cosmological
solutions of string theory or M-theory. We discuss two different ways in which
extremal p-branes can be generalised to non-extremal ones, and show how wide
classes of recently discussed cosmological models can be mapped into
non-extremal p-brane solutions of one of these two kinds. We also extend
previous discussions of cosmological solutions to include some that make use of
cosmological-type terms in the effective action that can arise from the
generalised dimensional reduction of string theory or M-theory.Comment: Latex, 24 pages, no figur
f(R) Theories of Supergravities and Pseudo-supergravities
We present f(R) theories of ten-dimensional supergravities, including the
fermionic sector up to the quadratic order in fermion fields. They are obtained
by performing the conformal scaling on the usual supergravities to the f(R)
frame in which the dilaton becomes an auxiliary field and can be integrated
out. The f(R) frame coincides with that of M-theory, D2-branes or NS-NS
5-branes. We study various BPS p-brane solutions and their near-horizon AdS
\times sphere geometries in the context of the f(R) theories. We find that new
solutions emerge with global structures that do not exist in the corresponding
solutions of the original supergravity description. In lower dimensions, We
construct the f(R) theory of N=2, D=5 gauged supergravity with a vector
multiplet, and that for the four-dimensional U(1)^4 gauged theory with three
vector fields set equal. We find that some previously-known BPS singular
"superstars" become wormholes in the f(R) theories. We also construct a large
class of f(R) (gauged) pseudo-supergravities. In addition we show that the
breathing mode in the Kaluza-Klein reduction of Gauss-Bonnet gravity on S^1 is
an auxiliary field and can be integrated out.Comment: Latex, 46 page
Gauged Six-dimensional Supergravity from Massive Type IIA
We obtain the complete non-linear Kaluza-Klein ansatz for the reduction of
the bosonic sector of massive type IIA supergravity to the Romans F(4) gauged
supergravity in six dimensions. The latter arises as a consistent warped S^4
reduction.Comment: Latex, 7 page
Pseudo-Killing Spinors, Pseudo-supersymmetric p-branes, Bubbling and Less-bubbling AdS Spaces
We consider Einstein gravity coupled to an n-form field strength in D
dimensions. Such a theory cannot be supersymmetrized in general, we
nevertheless propose a pseudo-Killing spinor equation and show that the AdS X
Sphere vacua have the maximum number of pseudo-Killing spinors, and hence are
fully pseudo-supersymmetric. We show that extremal p-branes and their
intersecting configurations preserve fractions of the pseudo-supersymmetry. We
study the integrability condition for general (D,n) and obtain the additional
constraints that are required so that the existence of the pseudo-Killing
spinors implies the Einstein equations of motion. We obtain new
pseudo-supersymmetric bubbling AdS_5 X S^5 spaces that are supported by a
non-self-dual 5-form. This demonstrates that non-supersymmegtric conformal
field theories may also have bubbling states of arbitrary droplets of free
fermions in the phase space. We also obtain an example of less-bubbling AdS
geometry in D=8, whose bubbling effects are severely restricted by the
additional constraint arising from the integrability condition.Comment: typos corrected, extra comments and references added, version
appeared in JHE
Cosmological Solutions in String Theories
We obtain a large class of cosmological solutions in the
toroidally-compactified low energy limits of string theories in dimensions.
We consider solutions where a -dimensional subset of the spatial
coordinates, parameterising a flat space, a sphere, or an hyperboloid,
describes the spatial sections of the physically-observed universe. The
equations of motion reduce to Liouville or Toda equations, which
are exactly solvable. We study some of the cases in detail, and find that under
suitable conditions they can describe four-dimensional expanding universes. We
discuss also how the solutions in dimensions behave upon oxidation back to
the string theory or M-theory.Comment: Latex, 21 pages, a reference adjuste
Fibre Bundles and Generalised Dimensional Reduction
We study some geometrical and topological aspects of the generalised
dimensional reduction of supergravities in D=11 and D=10 dimensions, which give
rise to massive theories in lower dimensions. In these reductions, a global
symmetry is used in order to allow some of the fields to have a non-trivial
dependence on the compactifying coordinates. Global consistency in the internal
space imposes topological restrictions on the parameters of the
compactification as well as the structure of the space itself. Examples that we
consider include the generalised reduction of the type IIA and type IIB
theories on a circle, and also the massive ten-dimensional theory obtained by
the generalised reduction of D=11 supergravity.Comment: 23 pages, Late
- …