1,593 research outputs found

    A self-consistent first-principles calculation scheme for correlated electron systems

    Full text link
    A self-consistent calculation scheme for correlated electron systems is created based on the density-functional theory (DFT). Our scheme is a multi-reference DFT (MR-DFT) calculation in which the electron charge density is reproduced by an auxiliary interacting Fermion system. A short-range Hubbard-type interaction is introduced by a rigorous manner with a residual term for the exchange-correlation energy. The Hubbard term is determined uniquely by referencing the density fluctuation at a selected localized orbital. This strategy to obtain an extension of the Kohn-Sham scheme provides a self-consistent electronic structure calculation for the materials design. Introducing an approximation for the residual exchange-correlation energy functional, we have the LDA+U energy functional. Practical self-consistent calculations are exemplified by simulations of Hydrogen systems, i.e. a molecule and a periodic one-dimensional array, which is a proof of existence of the interaction strength U as a continuous function of the local fluctuation and structural parameters of the system.Comment: 23 pages, 8 figures, to appear in J. Phys. Condens. Matte

    Spectral function of the spiral spin state in the trestle and ladder Hubbard model

    Full text link
    Eder and Ohta have found a violation of the Luttinger rule in the spectral function for the t-t'-J model, which was interpreted as a possible breakdown of the Tomonaga-Luttinger(TL) description in models where electrons can pass each other. Here we have computed the spin correlation along with the spectral function for the one-dimensional t-t' Hubbard model and two-leg Hubbard ladder. By varying the Hubbard U we have identified that such a phenomenon is in fact a spinless-fermion-like behavior of holes moving in a spiral spin configuration that has a spin correlation length of the system size.Comment: 3 pages, RevTex, 8 figures in Postscript, to be published in Phys. Rev. B (rapid communication

    Spin-twist driven persistent current in a strongly correlated two-dimensional electron system: a manifestation of the gauge field

    Full text link
    A persistent current, coupled with the spin state, of purely many-body origin is shown to exist in Nagaoka's ferromagnetic state in two dimensions (2D). This we regard as a manifestation of a gauge field, which comes from the surrounding spin configuration and acts on the hole motion, being coupled to the Aharonov-Bohm flux. This provides an example where the electron-electron interaction exerts a profound effect involving the spins in clean two-dimensional lattice systems in sharp contrast to continuum or spinless fermion systems.Comment: 11 pages, typeset using Revtex 3.0, Phys. Rev. B in press, 2 figures available upon request at [email protected]

    New Constraints on Radiative Decay of Long-Lived Particles in Big Bang Nucleosynthesis with New 4^4He Photodisintegration Data

    Full text link
    A recent measurement of 4^4He photodisintegration reactions, 4^4He(γ\gamma,pp)3^3H and 4^4He(γ\gamma,nn)3^3He with laser-Compton photons shows smaller cross sections than those estimated by other previous experiments at Eγ≲30E_\gamma \lesssim 30 MeV. We study big-bang nucleosynthesis with the radiative particle decay using the new photodisintegration cross sections of 4^4He as well as previous data. The sensitivity of the yields of all light elements D, T, 3^3He, 4^4He, 6^6Li, 7^7Li and 7^7Be to the cross sections is investigated. The change of the cross sections has an influence on the non-thermal yields of D, 3^3He and 4^4He. On the other hand, the non-thermal 6^6Li production is not sensitive to the change of the cross sections at this low energy, since the non-thermal secondary synthesis of 6^6Li needs energetic photons of Eγ≳50E_\gamma \gtrsim 50 MeV. The non-thermal nucleosynthesis triggered by the radiative particle decay is one of candidates of the production mechanism of 6^6Li observed in metal-poor halo stars (MPHSs). In the parameter region of the radiative particle lifetime and the emitted photon energy which satisfies the 6^6Li production above the abundance level observed in MPHSs, the change of the photodisintegration cross sections at Eγ≲30E_\gamma \lesssim 30 MeV as measured in the recent experiment leads to ∼10\sim 10% reduction of resulting 3^3He abundance, whereas the 6^6Li abundance does not change for this change of the cross sections of 4^4He(γ\gamma,pp)3^3H and 4^4He(γ\gamma,nn)3^3He. The 6^6Li abundance, however, could show a sizable change and therefore the future precise measurement of the cross sections at high energy Eγ≳E_\gamma \gtrsim 50 MeV is highly required.Comment: 10 pages, 7 figures, conclusion not changed, to be published in PR

    Flat-band ferromagnetism induced by off-site repulsions

    Full text link
    Density matrix renormalization group method is used to analyze how the nearest-neighbor repulsion V added to the Hubbard model on 1D triangular lattice and a railway trestle (t-t') model will affect the electron-correlation dominated ferromagnetism arising from the interference (frustration). Obtained phase diagram shows that there is a region in smaller-t' side where the critical on-site repulsion above which the system becomes ferromagnetic is reduced when the off-site repulsion is introduced.Comment: 4 pages, RevTex, 6 figures in Postscript, to be published in Phys. Rev.
    • …
    corecore