206 research outputs found
Modulation of Auxin and Cytokinin Responses by Early Steps of the Phenylpropanoid Pathway
Background: The phenylpropanoid pathway is responsible for the synthesis of numerous compounds important for plant growth and responses to the environment. In the first committed step of phenylpropanoid biosynthesis, the enzyme phenylalanine ammonia-lyase (PAL) deaminates L-phenylalanine into trans-cinnamic acid that is then converted into p-coumaric acid by cinnamate-4-hydroxylase (C4H). Recent studies showed that the Kelch repeat F-box (KFB) protein family of ubiquitin ligases control phenylpropanoid biosynthesis by promoting the proteolysis of PAL. However, this ubiquitin ligase family, alternatively named Kiss Me Deadly (KMD), was also implicated in cytokinin signaling as it was shown to promote the degradation of type-B ARRs, including the key response activator ARR1. Considering that ubiquitin ligases typically have narrow target specificity, this dual targeting of structurally and functionally unrelated proteins appeared unusual.
Results: Here we show that the KFBs indeed target PAL but not ARR1. Moreover, we show that changes in early phenylpropanoid biosynthesis alter cytokinin sensitivity – as reported earlier - but that the previously documented cytokinin growth response changes are primarily the result of altered auxin signaling. We found that reduced PAL accumulation decreased, whereas the loss of C4H function increased the strength of the auxin response. The combined loss of function of both enzymes led to a decrease in auxin sensitivity, indicating that metabolic events upstream of C4H control auxin sensitivity. This auxin/phenylpropanoid interaction impacts both shoot and root development and revealed an auxin-dependent stimulatory effect of trans-cinnamic acid feeding on leaf expansion and thus biomass accumulation.
Conclusions: Collectively, our results show that auxin-regulated plant growth is fine-tuned by early steps in phenylpropanoid biosynthesis and suggest that metabolites accumulating upstream of the C4H step impact the auxin response mechanism
Invariance of the essential spectra of operator pencils
The essential spectrum of operator pencils with bounded coefficients in a Hilbert space is studied. Sufficient conditions in terms of the operator coefficients of two pencils are derived which guarantee the same essential spectrum. This is done by exploiting a strong relation between an operator pencil and a specific linear subspace (linear relation)
Distinct roles for Arabidopsis SUMO protease ESD4 and its closest homolog ELS1
SUMO conjugation affects a broad range of processes in Arabidopsis thaliana, including flower initiation, pathogen defense, and responses to cold, drought and salt stress. We investigated two sequence-related SUMO-specific proteases that are both widely expressed and show that they differ significantly in their properties. The closest homolog of SUMO protease ESD4, ESD4-LIKE SUMO PROTEASE 1 (ELS1, alternatively called AtULP1a) has SUMO-specific proteolytic activity, but is functionally distinct from ESD4, as shown by intracellular localization, mutant phenotype and heterologous expression in yeast mutants. Furthermore, we show that the growth defects caused by loss of ESD4 function are not due to increased synthesis of the stress signal salicylic acid, as was previously shown for a SUMO ligase, indicating that impairment of the SUMO system affects plant growth in different ways. Our results demonstrate that two A. thaliana SUMO proteases showing close sequence similarity have distinct in vivo functions
Arabidopsis RPT2a, 19S Proteasome Subunit, Regulates Gene Silencing via DNA Methylation
The ubiquitin/proteasome pathway plays a crucial role in many biological processes. Here we report a novel role for the Arabidopsis 19S proteasome subunit RPT2a in regulating gene activity at the transcriptional level via DNA methylation. Knockout mutation of the RPT2a gene did not alter global protein levels; however, the transcriptional activities of reporter transgenes were severely reduced compared to those in the wild type. This transcriptional gene silencing (TGS) was observed for transgenes under control of either the constitutive CaMV 35S promoter or the cold-inducible RD29A promoter. Bisulfite sequencing analysis revealed that both the transgene and endogenous RD29A promoter regions were hypermethylated at CG and non-CG contexts in the rpt2a mutant. Moreover, the TGS of transgenes driven by the CaMV 35S promoters was released by treatment with the DNA methylation inhibitor 5-aza-2′-deoxycytidine, but not by application of the inhibitor of histone deacetylase Trichostatin A. Genetic crosses with the DNA methyltransferase met1 single or drm1drm2cmt3 triple mutants also resulted in a release of CaMV 35S transgene TGS in the rpt2a mutant background. Increased methylation was also found at transposon sequences, suggesting that the 19S proteasome containing AtRPT2a negatively regulates TGS at transgenes and at specific endogenous genes through DNA methylation
Transgenerational Stress Memory Is Not a General Response in Arabidopsis
Adverse conditions can trigger DNA damage as well as DNA repair responses in plants. A variety of stress factors are known to stimulate homologous recombination, the most accurate repair pathway, by increasing the concentration of necessary enzymatic components and the frequency of events. This effect has been reported to last into subsequent generations not exposed to the stress. To establish a basis for a genetic analysis of this transgenerational stress memory, a broad range of treatments was tested for quantitative effects on homologous recombination in the progeny. Several Arabidopsis lines, transgenic for well-established recombination traps, were exposed to 10 different physical and chemical stress treatments, and scored for the number of somatic homologous recombination (SHR) events in the treated generation as well as in the two subsequent generations that were not treated. These numbers were related to the expression level of genes involved in homologous recombination and repair. SHR was enhanced after the majority of treatments, confirming previous data and adding new effective stress types, especially interference with chromatin. Compounds that directly modify DNA stimulated SHR to values exceeding previously described induction rates, concomitant with an induction of genes involved in SHR. In spite of the significant stimulation in the stressed generations, the two subsequent non-treated generations only showed a low and stochastic increase in SHR that did not correlate with the degree of stimulation in the parental plants. Transcripts coding for SHR enzymes generally returned to pre-treatment levels in the progeny. Thus, transgenerational effects on SHR frequency are not a general response to abiotic stress in Arabidopsis and may require special conditions
Ratio-Based Analysis of Differential mRNA Processing and Expression of a Polyadenylation Factor Mutant pcfs4 Using Arabidopsis Tiling Microarray
US National Institutes of Health [1R15GM07719201A1]; US National Science Foundation [IOS-0817818]; Ohio Plant Biotech Consortium; National Natural Science Foundation of China [60774033]; Specialized Research Fund for the Doctoral Program of Higher EducatiBackground: Alternative polyadenylation as a mechanism in gene expression regulation has been widely recognized in recent years. Arabidopsis polyadenylation factor PCFS4 was shown to function in leaf development and in flowering time control. The function of PCFS4 in controlling flowering time was correlated with the alternative polyadenylation of FCA, a flowering time regulator. However, genetic evidence suggested additional targets of PCFS4 that may mediate its function in both flowering time and leaf development. Methodology/Principal Findings: To identify further targets, we investigated the whole transcriptome of a PCFS4 mutant using Affymetrix Arabidopsis genomic tiling 1.0R array and developed a data analysis pipeline, termed RADPRE (Ratio-based Analysis of Differential mRNA Processing and Expression). In RADPRE, ratios of normalized probe intensities between wild type Columbia and a pcfs4 mutant were first generated. By doing so, one of the major problems of tiling array data-variations caused by differential probe affinity-was significantly alleviated. With the probe ratios as inputs, a hierarchy of statistical tests was carried out to identify differentially processed genes (DPG) and differentially expressed genes (DEG). The false discovery rate (FDR) of this analysis was estimated by using the balanced random combinations of Col/pcfs4 and pcfs4/Col ratios as inputs. Gene Ontology (GO) analysis of the DPGs and DEGs revealed potential new roles of PCFS4 in stress responses besides flowering time regulation. Conclusion/Significance: We identified 68 DPGs and 114 DEGs with FDR at 1% and 2%, respectively. Most of the 68 DPGs were subjected to alternative polyadenylation, splicing or transcription initiation. Quantitative PCR analysis of a set of DPGs confirmed that most of these genes were truly differentially processed in pcfs4 mutant plants. The enriched GO term "regulation of flower development'' among PCFS4 targets further indicated the efficacy of the RADPRE pipeline. This simple but effective program is available upon request
Evaluation of chloroform/methanol extraction to facilitate the study of membrane proteins of non-model plants
Membrane proteins are of great interest to plant physiologists because of their important function in many physiological processes. However, their study is hampered by their low abundance and poor solubility in aqueous buffers. Proteomics studies of non-model plants are generally restricted to gel-based methods. Unfortunately, all gel-based techniques for membrane proteomics lack resolving power. Therefore, a very stringent enrichment method is needed before protein separation. In this study, protein extraction in a mixture of chloroform and methanol in combination with gel electrophoresis is evaluated as a method to study membrane proteins in non-model plants. Benefits as well as disadvantages of the method are discussed. To demonstrate the pitfalls of working with non-model plants and to give a proof of principle, the method was first applied to whole leaves of the model plant Arabidopsis. Subsequently, a comparison with proteins extracted from leaves of the non-model plant, banana, was made. To estimate the tissue and organelle specificity of the method, it was also applied on banana meristems. Abundant membrane or lipid-associated proteins could be identified in both tissues, with the leaf extract yielding a higher number of membrane proteins
The Circadian Clock Protein Timeless Regulates Phagocytosis of Bacteria in Drosophila
Survival of bacterial infection is the result of complex host-pathogen interactions. An often-overlooked aspect of these interactions is the circadian state of the host. Previously, we demonstrated that Drosophila mutants lacking the circadian regulatory proteins Timeless (Tim) and Period (Per) are sensitive to infection by S. pneumoniae. Sensitivity to infection can be mediated either by changes in resistance (control of microbial load) or tolerance (endurance of the pathogenic effects of infection). Here we show that Tim regulates resistance against both S. pneumoniae and S. marcescens. We set out to characterize and identify the underlying mechanism of resistance that is circadian-regulated. Using S. pneumoniae, we found that resistance oscillates daily in adult wild-type flies and that these oscillations are absent in Tim mutants. Drosophila have at least three main resistance mechanisms to kill high levels of bacteria in their hemolymph: melanization, antimicrobial peptides, and phagocytosis. We found that melanization is not circadian-regulated. We further found that basal levels of AMP gene expression exhibit time-of-day oscillations but that these are Tim-independent; moreover, infection-induced AMP gene expression is not circadian-regulated. We then show that phagocytosis is circadian-regulated. Wild-type flies exhibit up-regulated phagocytic activity at night; Tim mutants have normal phagocytic activity during the day but lack this night-time peak. Tim appears to regulate an upstream event in phagocytosis, such as bacterial recognition or activation of phagocytic hemocytes. Interestingly, inhibition of phagocytosis in wild type flies results in survival kinetics similar to Tim mutants after infection with S. pneumoniae. Taken together, these results suggest that loss of circadian oscillation of a specific immune function (phagocytosis) can have significant effects on long-term survival of infection
- …