38,747 research outputs found
A class of homogeneous scalar-tensor cosmologies with a radiation fluid
We present a new class of exact homogeneous cosmological solutions with a
radiation fluid for all scalar-tensor theories. The solutions belong to Bianchi
type cosmologies. Explicit examples of nonsingular homogeneous
scalar-tensor cosmologies are also given.Comment: 7 pages, LaTex; v2 type mistakes corrected, comments adde
Random Network Models and Quantum Phase Transitions in Two Dimensions
An overview of the random network model invented by Chalker and Coddington,
and its generalizations, is provided. After a short introduction into the
physics of the Integer Quantum Hall Effect, which historically has been the
motivation for introducing the network model, the percolation model for
electrons in spatial dimension 2 in a strong perpendicular magnetic field and a
spatially correlated random potential is described. Based on this, the network
model is established, using the concepts of percolating probability amplitude
and tunneling. Its localization properties and its behavior at the critical
point are discussed including a short survey on the statistics of energy levels
and wave function amplitudes. Magneto-transport is reviewed with emphasis on
some new results on conductance distributions. Generalizations are performed by
establishing equivalent Hamiltonians. In particular, the significance of
mappings to the Dirac model and the two dimensional Ising model are discussed.
A description of renormalization group treatments is given. The classification
of two dimensional random systems according to their symmetries is outlined.
This provides access to the complete set of quantum phase transitions like the
thermal Hall transition and the spin quantum Hall transition in two dimension.
The supersymmetric effective field theory for the critical properties of
network models is formulated. The network model is extended to higher
dimensions including remarks on the chiral metal phase at the surface of a
multi-layer quantum Hall system.Comment: 176 pages, final version, references correcte
PACS and SPIRE photometer maps of M 33: First results of the HERschel M 33 Extended Survey (HERM33ES)
Context. Within the framework of the HERM33ES key program, we are studying the star forming interstellar medium in the nearby, metal-poor spiral galaxy M 33, exploiting the high resolution and sensitivity of Herschel.
Aims. We use PACS and SPIRE maps at 100, 160, 250, 350, and 500 μm wavelength, to study the variation of the spectral energy distributions (SEDs) with galacto-centric distance.
Methods. Detailed SED modeling is performed using azimuthally averaged fluxes in elliptical rings of 2 kpc width, out to 8 kpc galacto-centric distance. Simple isothermal and two-component grey body models, with fixed dust emissivity index, are fitted to the SEDs between 24 μm and 500 μm using also MIPS/Spitzer  data, to derive first estimates of the dust physical conditions.
Results. The far-infrared and submillimeter maps reveal the branched, knotted spiral structure of M 33. An underlying diffuse disk is seen in all SPIRE maps (250–500 μm). Two component fits to the SEDs agree better than isothermal models with the observed, total and radially averaged flux densities. The two component model, with β fixed at 1.5, best fits the global and the radial SEDs. The cold dust component clearly dominates; the relative mass of the warm component is less than 0.3% for all the fits. The temperature of the warm component is not well constrained and is found to be about 60 K ± 10 K. The temperature of the cold component drops significantly from ~24 K in the inner 2 kpc radius to 13 K beyond 6 kpc radial distance, for the best fitting model. The gas-to-dust ratio for β = 1.5, averaged over the galaxy, is higher than the solar value by a factor of 1.5 and is roughly in agreement with the subsolar metallicity of M 33
Regis-Darwin specified in the p-Calculus
There now is a translator for DARWIN programs that automatically generates their π-calculus equivalents. A variety of errors in DARWIN programs can be detected at the π-calculus level. These include detection of recursive structures, unbound ports and ports that are bound in the wrong direction. It can also be used to confirm whether two REGIS-DARWIN programs are equivalent
Observables in the Decays of B to Two Vector Mesons
In general there are nine observables in the decay of a B meson to two vector
mesons defined in terms of polarization correlations of these mesons. Only six
of these can be detected via the subsequent decay angular distributions because
of parity conservation in those decays. The remaining three require the
measurement of the spin polarization of one of the decay products.Comment: 12 pages, no figur
A New Universality for Random Sequential Deposition of Needles
Percolation and jamming phenomena are investigated for random sequential
deposition of rectangular needles on square lattices. Associated
thresholds and are determined for various needle
sizes. Their ratios are found to be a constant for all sizes. In addition the ratio of jamming thresholds for
respectively square blocks and needles is also found to be a constant . These constants exhibit some universal connexion in the geometry of
jamming and percolation for both anisotropic shapes (needles versus square
lattices) and isotropic shapes (square blocks on square lattices). A universal
empirical law is proposed for all three thresholds as a function of .Comment: 9 pages, latex, 4 eps figures include
Spherical Orbifolds for Cosmic Topology
Harmonic analysis is a tool to infer cosmic topology from the measured
astrophysical cosmic microwave background CMB radiation. For overall positive
curvature, Platonic spherical manifolds are candidates for this analysis. We
combine the specific point symmetry of the Platonic manifolds with their deck
transformations. This analysis in topology leads from manifolds to orbifolds.
We discuss the deck transformations of the orbifolds and give eigenmodes for
the harmonic analysis as linear combinations of Wigner polynomials on the
3-sphere. These provide new tools for detecting cosmic topology from the CMB
radiation.Comment: 17 pages, 9 figures. arXiv admin note: substantial text overlap with
arXiv:1011.427
High-resolution single-pulse studies of the Vela Pulsar
We present high-resolution multi-frequency single-pulse observations of the
Vela pulsar, PSR B0833-45, aimed at studying micro-structure, phase-resolved
intensity fluctuations and energy distributions at 1.41 and 2.30 GHz. We show
that the micro-pulse width in pulsars has a period dependence. Like individual
pulses, Vela's micro-pulses are highly elliptically polarized. There is a
strong correlation between Stokes parameters V and I in the micro-structure. We
show that the V/I distribution is Gaussian with a narrow width and that this
width appears to be constant as a function of pulse phase. The phase-resolved
intensity distributions of I are best fitted with log-normal statistics. Extra
emission components, i.e.``bump'' and ``giant micro-pulses'', discovered by
Johnston et al.(2001) are also present at 2.3 GHz. The bump component seems to
be an extra component superposed on the main pulse profile but does not appear
periodically. The giant micro-pulses are time-resolved and have significant
jitter in their arrival times. Their flux density distribution is best fitted
by a power-law, indicating a link between these features and ``classical''
giant pulses as observed for the Crab pulsar, (PSR B0531+21), PSR B1937+21 and
PSR B1821-24. We find that Vela contains a mixture of emission properties
representing both ``classical'' properties of radio pulsars (e.g.
micro-structure, high degree of polarization, S-like position angle swing,
orthogonal modes) and features which are most likely related to high-energy
emission (e.g. extra profile components, giant micro-pulses). It hence
represents an ideal test case to study the relationship between radio and
high-energy emission in significant detail.Comment: accepted for publication in MNRAS (11 pages, 10 figures
- …