2 research outputs found

    Computational methods of Gaussian Particle Swarm Optimization (GPSO) and Lagrange Multiplier on economic dispatch issues (case study on electrical system of Java-Bali IV area)

    No full text
    The objective in this paper is about economic dispatch problem of electric power generation where scheduling the committed generating units outputs so as to meet the required load demand at minimum operating cost, while satisfying all units and system equality and inequality constraint. In the operating of electric power system, an economic planning problem is one of variables that its must be considered since economically planning will give more efficiency in operational cost. In this paper the economic dispatch problem which has non linear cost function solved by using swarm intelligent method is Gaussian Particle Swarm Optimization (GPSO) and Lagrange Multiplier. GPSO is a population-based stochastic algorithms which their moving inspired by swarm intelligent and probabilities theories. To analize its accuracy, the economic dispatch solution by GPSO method will be compared with Lagrange multiplier method. From the running test result the GPSO method give economically planning calculation which it better than Lagrange multiplier method and the GPSO method faster to getting error convergence. Therefore the GPSO method have better performance to getting global best solution than the Lagrange method

    Computational methods of Gaussian Particle Swarm Optimization (GPSO) and Lagrange Multiplier on economic dispatch issues (case study on electrical system of Java-Bali IV area)

    No full text
    The objective in this paper is about economic dispatch problem of electric power generation where scheduling the committed generating units outputs so as to meet the required load demand at minimum operating cost, while satisfying all units and system equality and inequality constraint. In the operating of electric power system, an economic planning problem is one of variables that its must be considered since economically planning will give more efficiency in operational cost. In this paper the economic dispatch problem which has non linear cost function solved by using swarm intelligent method is Gaussian Particle Swarm Optimization (GPSO) and Lagrange Multiplier. GPSO is a population-based stochastic algorithms which their moving inspired by swarm intelligent and probabilities theories. To analize its accuracy, the economic dispatch solution by GPSO method will be compared with Lagrange multiplier method. From the running test result the GPSO method give economically planning calculation which it better than Lagrange multiplier method and the GPSO method faster to getting error convergence. Therefore the GPSO method have better performance to getting global best solution than the Lagrange method
    corecore