153 research outputs found

    Using a sulfur-bearing silane to improve rubber formulations for potential use in industrial rubber articles

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of Adhesion Science and Technology on 13/08/2012, available online: http://dx.doi.org/10.1080/01694243.The availability of the coupling agent bis (3-triethoxysilylpropyl)-tetrasulfide (TESPT) has provided an opportunity for enhancing the reinforcing capabilities of precipitated amorphous white silica in rubber. Styrene-butadiene rubber, synthetic polyisoprene rubber (IR), acrylonitrile-butadiene rubber, and natural rubber (NR) containing the same loading of a precipitated silica filler were prepared. The silica surface was pretreated with TESPT, which is a sulfur-bearing bifunctional organosilane to chemically bond silica to the rubber. The rubber compounds were subsequently cured by reacting the tetrasulfane groups of TESPT with double bonds in the rubber chains and the cure was optimized by adding sulfenamide accelerator and zinc oxide. The IR and NR needed more accelerators for curing. Surprisingly, there was no obvious correlation between the internal double bond content and the accelerator requirement for the optimum cure of the rubbers. Using the TESPT pretreated silanized silica was a very efficient method for cross-linking and reinforcing the rubbers. It reduced the use of the chemical curatives significantly while maintaining excellent mechanical properties of the cured rubbers. Moreover, it improved health and safety at work-place, reduced cost, and minimized damage to the environment because less chemical curatives were used. Therefore, TESPT was classified as "green silane" for use in rubber formulations

    Extensive stretch of polysiloxane network chains with random- and super-coiled conformations

    No full text
    The stress-elongation (λ) relations at large deformations for the polymer network chains with randomcoiled and supercoiled conformations are investigated using the polysiloxane networks with high elongations at break far over 10. Supercoil is the conformation of network chains in deswollen polymer networks which are made by removing solvent from the networks crosslinked in solutions at low polymer concentrations. The validity of the scaling concept of Pincus blob for the mechanical response of a polymer chain is experimentally confirmed for the network composed of randomcoiled chains. The analysis of the stress-λ relations for the deswollen networks comprised of supercoiled chains on the basis of the Pincus blob concept suggests that supercoil is a much more contracted conformation relative to randomcoil
    corecore