4,692 research outputs found

    Can the Electroweak Interaction Break Itself?

    Get PDF
    I examine the possibility that the electroweak interaction breaks itself via the condensation of fermions in large representations of the weak SU(2)_L gauge group.Comment: 10 pages, Latex, no figures. Published in Phys. Lett. B340, 236 (1994)

    Lattice QCD at finite isospin density at zero and finite temperature

    Get PDF
    We simulate lattice QCD with dynamical uu and dd quarks at finite chemical potential, μI\mu_I, for the third component of isospin (I3I_3), at both zero and at finite temperature. At zero temperature there is some μI\mu_I, μc\mu_c say, above which I3I_3 and parity are spontaneously broken by a charged pion condensate. This is in qualitative agreement with the prediction of effective (chiral) Lagrangians which also predict μc=mπ\mu_c=m_\pi. This transition appears to be second order, with scaling properties consistent with the mean-field predictions of such effective Lagrangian models. We have also studied the restoration of I3I_3 symmetry at high temperature for μI>μc\mu_I > \mu_c. For μI\mu_I sufficiently large, this finite temperature phase transition appears to be first order. As μI\mu_I is decreased it becomes second order connecting continuously with the zero temperature transition.Comment: 23 pages, Revtex, 9 figures. Major revision of sections 3 and 4 to include new analyses of critical scaling which we now find to be in the universality class of mean-field theor

    On the Triviality of Textbook Quantum Electrodynamics

    Get PDF
    By adding a small, irrelevant four fermi interaction to the action of lattice Quantum Electrodynamics (QED), the theory can be simulated with massless quarks in a vacuum free of lattice monopoles. This allows an ab initio high precision, controlled study of the existence of "textbook" Quantum Electrodynamics with several species of fermions. The lattice theory possesses a second order chiral phase transition which we show is logarithmically trivial. The logarithms of triviality, which modify mean field scaling laws, are pinpointed in several observables. The result supports Landau's contention that perturbative QED suffers from complete screening and would have a vanishing fine structure constant in the absence of a cutoff.Comment: reference to Phys. Rev. Lett.80, 4119(1998) adde

    Singular Structure in 4D Simplicial Gravity

    Get PDF
    We show that the phase transition previously observed in dynamical triangulation models of quantum gravity can be understood as being due to the creation of a singular link. The transition between singular and non-singular geometries as the gravitational coupling is varied appears to be first order.Comment: 9 pages, 5 figures, 3 references adde

    The pseudo-Goldstone spectrum of 2-colour QCD at finite density

    Full text link
    We examine the spectrum of 2-colour lattice QCD with 4 continuum flavours at a finite chemical potential (μ\mu) for quark-number, on a 123×2412^3 \times 24 lattice. First we present evidence that the system undergoes a transition to a state with a diquark condensate, which spontaneously breaks quark number at μ=mπ/2\mu=m_\pi/2, and that this transition is mean field in nature. We then examine the 3 states that would be Goldstone bosons at μ=0\mu=0 for zero Dirac and Majorana quark masses. The predictions of chiral effective Lagrangians give a good description of the behaviour of these masses for μ<mπ/2\mu < m_\pi/2. Except for the heaviest of these states, these predictions diverge from our measurements, once μ\mu is significantly greater than mπ/2m_\pi/2. However, the qualitative behaviour of these masses, indicates that the physics is very similar to that predicted by these effective Lagrangians, and there is some indication that at least part of these discrepancies is due to saturation, a lattice artifact.Comment: 32 pages LaTeX/Revtex, 8 Postscript figure

    Polarization Properties of A Multi-Moded Concentrator

    Full text link
    We present the design and performance of a non-imaging concentrator for use in broad-band polarimetry at millimeter through submillimeter wavelengths. A rectangular geometry preserves the input polarization state as the concentrator couples f/2 incident optics to a 2 pi sr detector. Measurements of the co-polar and cross-polar beams in both the few-mode and highly over-moded limits agree with a simple model based on mode truncation. The measured co-polar beam pattern is nearly independent of frequency in both linear polarizations. The cross-polar beam pattern is dominated by a uniform term corresponding to polarization efficiency 94%. After correcting for efficiency, the remaining cross-polar response is -18 dB.Comment: 9 pages including 8 figures. Accepted for publication in the Journal of the Optical Society of America

    Heavy Dynamical Fermions in Lattice QCD

    Full text link
    It is expected that the only effect of heavy dynamical fermions in QCD is to renormalize the gauge coupling. We derive a simple expression for the shift in the gauge coupling induced by NfN_f flavors of heavy fermions. We compare this formula to the shift in the gauge coupling at which the confinement-deconfinement phase transition occurs (at fixed lattice size) from numerical simulations as a function of quark mass and NfN_f. We find remarkable agreement with our expression down to a fairly light quark mass. However, simulations with eight heavy flavors and two light flavors show that the eight flavors do more than just shift the gauge coupling. We observe confinement-deconfinement transitions at β=0\beta=0 induced by a large number of heavy quarks. We comment on the relevance of our results to contemporary simulations of QCD which include dynamical fermions.Comment: COLO-HEP-311, 26 pages and 6 postscript figures; file is a shar file and all macros are (hopefully) include
    • …
    corecore