7 research outputs found

    Strong electrically tunable exciton g-factors in an individual quantum dots due to hole orbital angular momentum quenching

    Get PDF
    Strong electrically tunable exciton g-factors are observed in individual (Ga)InAs self-assembled quantum dots and the microscopic origin of the effect is explained. Realistic eight band k.p simulations quantitatively account for our observations, simultaneously reproducing the exciton transition energy, DC Stark shift, diamagnetic shift and g-factor tunability for model dots with the measured size and a comparatively low In-composition of x(In)~35% near the dot apex. We show that the observed g-factor tunability is dominated by the hole, the electron contributing only weakly. The electric field induced perturbation of the hole wavefunction is shown to impact upon the g-factor via orbital angular momentum quenching, the change of the In:Ga composition inside the envelope function playing only a minor role. Our results provide design rules for growing self-assembled quantum dots for electrical spin manipulation via electrical g-factor modulation

    Highly Non-linear Excitonic Zeeman Spin-Splitting in Composition-Engineered Artificial Atoms

    Get PDF
    Non-linear Zeeman splitting of neutral excitons is observed in composition engineered In(x)Ga(1-x)As self-assembled quantum dots and its microscopic origin is explained. Eight-band k.p simulations, performed using realistic dot parameters extracted from cross-sectional scanning tunneling microscopy, reveal that a quadratic contribution to the Zeeman energy originates from a spin dependent mixing of heavy and light hole orbital states in the dot. The dilute In-composition (x<0.35) and large lateral size (40-50 nm) of the quantum dots investigated is shown to strongly enhance the non-linear excitonic Zeeman gap, providing a blueprint to enhance such magnetic non-linearities via growth engineering

    Highly nonlinear excitonic Zeeman spin splitting in composition-engineered artificial atoms

    No full text
    Non-linear Zeeman splitting of neutral excitons is observed in composition engineerd InxGa1-xAS self-assembled quantum dots and its microscopic origin is explained. Eight-band k . p simulations, performed using realistic dot parameters extracted from cross-sectional scanning tunneling microscopy, reveal that a quadratic contribution to the Zeeman energy originates from a spin dependent mixing of heavy and light hole orbital states in the dot. The dilute In-composition (x 0.35) and large lateral size (40 - 50 nm) of the quantum dots investigated is shown to strongly enhance the non-linear excitonic Zeeman gap, providing a blueprint to enhance such magnetic non-linearitics via growth engineerin
    corecore