54 research outputs found

    Plasmodium falciparum clearance with artemisinin-based combination therapy (ACT) in patients with glucose-6-phosphate dehydrogenase deficiency in Mali

    Get PDF
    URL : http://www.malariajournal.com/content/9/1/332Background: Artemisinin-based combination therapy (ACT) is currently the most effective medicine for the treatment of uncomplicated malaria. Artemisinin has previously been shown to increase the clearance of Plasmodium falciparum in malaria patients with haemoglobin E trait, but it did not increase parasite inhibition in an in vitro study using haemoglobin AS erythrocytes. The current study describes the efficacy of artemisinin derivatives on P. falciparum clearance in patients with glucose-6-phosphate dehydrogenase deficiency (G6PD), a haemoglobin enzyme deficiency, not yet studied in the same context, but nonetheless is a common in malaria endemic areas, associated with host protection against uncomplicated and severe malaria. The impact of G6PD deficiency on parasite clearance with ACT treatment was compared between G6PD-deficient patients and G6PD-normal group. Methods: Blood samples from children and adults participants (1 to 70 years old) with uncomplicated P. falciparum malaria residing in Kambila, Mali were analysed. Study participants were randomly assigned to receive either artemether-lumefantrine (Coartem®) or artesunate plus mefloquine (Artequin™). A restriction-fragment length polymorphism analysis of PCR-amplified DNA samples was used to identify the (A-) allele of the gene mutation responsible for G6PD deficiency (G6PD*A-). 470 blood samples were thus analysed and of these, DNA was extracted from 315 samples using the QIAamp kit for PCR to identify the G6PD*A- gene. Results

    Evaluation of the efficacy and safety of artemether-lumefantrine in the treatment of acute uncomplicated Plasmodium falciparum malaria in Nigerian infants and children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The six-dose regimen of artemether-lumefantrine (AL) is now considered the gold standard for the treatment of uncomplicated <it>Plasmodium falciparum </it>malaria. There are few reports evaluating co-artemether in very young Nigerian infants and children. Results of the evaluation of the six-dose regimen in very young infants and children in Nigeria are presented in this report.</p> <p>Methods</p> <p>As part of a larger African study, this open label, non-comparative trial, assessed the efficacy and safety of six-dose regimen of AL tablets in 103 Nigerian infants and children weighing between five and 25 kg suffering from acute uncomplicated malaria. Treatment was administered under supervision over three days with children as in-patients. 12-lead ECG tracings were taken pre-treatment and at day 3.</p> <p>Results</p> <p>Ninety-three infants and children completed the study as stipulated by the protocol. Mean fever and parasite clearance times for the intent to treat population (ITT) were 24.9 h ± (1.28) and 26 h ± (4.14) and the corresponding figures for the per-protocol population (PP) were 19.24 h ± 13.9 and 25.62 h ± 11.25 respectively. Day 14 cure rates for the ITT and PP were 95.1% and 100% respectively while day 28 cure rates were 91.3% and 95.7% respectively. The overall PCR corrected day 28 cure rate was 95.1% for the ITT. The six-dose regimen of AL was well tolerated with no drug-related serious adverse events. Although six patients recorded a QTc prolongation of > 60 ms on D3 over D0 recording, no patient recorded a QTc interval > 500 ms.</p> <p>Conclusion</p> <p>The six-dose regimen of AL tablets is safe and effective for the treatment of acute uncomplicated malaria in Nigerian infants and children weighing between five and 25 kg.</p> <p>Trial registration</p> <p>NCT00709969</p

    A Genetically Hard-Wired Metabolic Transcriptome in Plasmodium falciparum Fails to Mount Protective Responses to Lethal Antifolates

    Get PDF
    Genome sequences of Plasmodium falciparum allow for global analysis of drug responses to antimalarial agents. It was of interest to learn how DNA microarrays may be used to study drug action in malaria parasites. In one large, tightly controlled study involving 123 microarray hybridizations between cDNA from isogenic drug-sensitive and drug-resistant parasites, a lethal antifolate (WR99210) failed to over-produce RNA for the genetically proven principal target, dihydrofolate reductase-thymidylate synthase (DHFR-TS). This transcriptional rigidity carried over to metabolically related RNA encoding folate and pyrimidine biosynthesis, as well as to the rest of the parasite genome. No genes were reproducibly up-regulated by more than 2-fold until 24 h after initial drug exposure, even though clonal viability decreased by 50% within 6 h. We predicted and showed that while the parasites do not mount protective transcriptional responses to antifolates in real time, P. falciparum cells transfected with human DHFR gene, and adapted to long-term WR99210 exposure, adjusted the hard-wired transcriptome itself to thrive in the presence of the drug. A system-wide incapacity for changing RNA levels in response to specific metabolic perturbations may contribute to selective vulnerabilities of Plasmodium falciparum to lethal antimetabolites. In addition, such regulation affects how DNA microarrays are used to understand the mode of action of antimetabolites

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Mutational analysis of Plasmodium falciparum dihydrofolate reductase: the role of aspartate 54 and phenylalanine 223 on catalytic activity and antifolate binding

    No full text
    The catalytic activity and ability to confer resistance to antifolates of Plasmodium falciparum dihydrofolate reductase (pfDHFR) through single and double mutations at Asp-54 and Phe-223 were investigated. A single Asp54Glu (D54E) mutation in the pfDHFR domain greatly decreased the catalytic activity of the enzyme and affected both the K, values for the substrate dihydrofolate and the K-i values for pyrimethamine, cycloguanil and WR99210. The Phe223Ser (F223S) single mutant had unperturbed kinetics but had very poor affinity with the first two antifolates. The ability to confer high resistance to the antifolates of F223S enzyme was, however, abolished in the D54E + F223S double mutant enzyme. When D54E mutation was present together with the A16V + S108T double mutation, the effects on the Km values for the substrate dihydrofolate and the binding affinity of antifolates were much more pronounced. The severely impaired kinetics and poor activity observed in A16V+S108T+D54E enzyme could, however, be restored when F223S was introduced, while the binding affinities to the antifolates remained poor. The experimental findings can be explained with a model for substrate and inhibitor binding. Our data not only indicate the importance of Asp-54 of pfDHFR in catalysis and inhibitor binding, but also provide evidence that infer the potentially crucial function of the C-terminal portion of pfDHFR domain. (C) 2002 Elsevier Science B.V. All rights reserved

    Scoping Studies into the Structure-Activity Relationship (SAR) of Phenylephrine-Derived Analogues as Inhibitors of Trypanosoma brucei rhodesiense

    No full text
    Human African Trypanosomiasis (HAT) is a disease caused by the parasite Trypanosoma brucei and is classified as a neglected tropical disease of concern in sub-Saharan Africa. A scoping study has been undertaken to develop a preliminary structure activity relationship of a tetrahydroisoquinoline scaffold. Fourteen compounds based around this core scaffold were synthesised and evaluated for their activity against Trypanosoma brucei rhodesiense in vitro. Initial results are promising with a number of analogues showing low micromolar inhibition of T.b.rhodesiense with acceptable selectivity over mammalian cells. The most promising is a secondary amine analogue showing the most potent inhibition of T.b.rhodesiense, with an IC50 value of 0.25 ± 0.02 µM, while also showing low cytotoxicity to mammalian cells
    corecore