48 research outputs found
Real Time QRS Detection Based on M-ary Likelihood Ratio Test on the DFT Coefficients
This paper shows an adaptive statistical test for QRS detection of electrocardiography (ECG) signals. The method is based on a M-ary generalized likelihood ratio test (LRT) defined over a multiple observation window in the Fourier domain. The motivations for proposing another detection algorithm based on maximum a posteriori (MAP) estimation are found in the high complexity of the signal model proposed in previous approaches which i) makes them computationally unfeasible or not intended for real time applications such as intensive care monitoring and (ii) in which the parameter selection conditions the overall performance. In this sense, we propose an alternative model based on the independent Gaussian properties of the Discrete Fourier Transform (DFT) coefficients, which allows to define a simplified MAP probability function. In addition, the proposed approach defines an adaptive MAP statistical test in which a global hypothesis is defined on particular hypotheses of the multiple observation window. In this sense, the observation interval is modeled as a discontinuous transmission discrete-time stochastic process avoiding the inclusion of parameters that constraint the morphology of the QRS complexes.This work has received research funding from the Spanish government (www.micinn.es) under project TEC2012 34306 (DiagnoSIS, Diagnosis by means of Statistical Intelligent Systems, 70K€) and projects P09-TIC-4530 (300K€) and P11-TIC-7103 (156K€) from the Andalusian government (http://www.juntadeandalucia.es/organismo​s/economiainnovacioncienciayempleo.html)
Revisiting QRS detection methodologies for portable, wearable, battery-operated, and wireless ECG systems
Cardiovascular diseases are the number one cause of death worldwide. Currently, portable battery-operated systems such as mobile phones with wireless ECG sensors have the potential to be used in continuous cardiac function assessment that can be easily integrated into daily life. These portable point-of-care diagnostic systems can therefore help unveil and treat cardiovascular diseases. The basis for ECG analysis is a robust detection of the prominent QRS complex, as well as other ECG signal characteristics. However, it is not clear from the literature which ECG analysis algorithms are suited for an implementation on a mobile device. We investigate current QRS detection algorithms based on three assessment criteria: 1) robustness to noise, 2) parameter choice, and 3) numerical efficiency, in order to target a universal fast-robust detector. Furthermore, existing QRS detection algorithms may provide an acceptable solution only on small segments of ECG signals, within a certain amplitude range, or amid particular types of arrhythmia and/or noise. These issues are discussed in the context of a comparison with the most conventional algorithms, followed by future recommendations for developing reliable QRS detection schemes suitable for implementation on battery-operated mobile devices.Mohamed Elgendi, Björn Eskofier, Socrates Dokos, Derek Abbot
On the relevance of preprocessing in predictive maintenance for dynamic systems
The complexity involved in the process of real-time data-driven monitoring dynamic systems for predicted maintenance is usually huge. With more or less in-depth any data-driven approach is sensitive to data preprocessing, understood as any data treatment prior to the application of the monitoring model, being sometimes crucial for the final development of the employed monitoring technique. The aim of this work is to quantify the sensitiveness of data-driven predictive maintenance models in dynamic systems in an exhaustive way.
We consider a couple of predictive maintenance scenarios, each of them defined by some public available data. For each scenario, we consider its properties and apply several techniques for each of the successive preprocessing steps, e.g. data cleaning, missing values treatment, outlier detection, feature selection, or imbalance compensation. The pretreatment configurations, i.e. sequential combinations of techniques from different preprocessing steps, are considered together with different monitoring approaches, in order to determine the relevance of data preprocessing for predictive maintenance in dynamical systems
TRACKING OF UNKNOWN NON-STATIONARY CHIRP SIGNALS USING UNSUPERVISED CLUSTERING IN THE WIGNER DISTRIBUTION SPACE.
The authors are concerned with the problems of detecting the presence and tracking the unknown, time-varying instantaneous frequencies of nonoverlapping linear or nonlinear FM chirp signals embedded in noise and overlapping linear FM chrip signals embedded in noise. No prior knowledge is assumed about the signal parameters, or when the signal changes its parameters in time, or the number of signals present. For both the overlapping and nonoverlapping cases, the authors analyze the Wigner distribution (WD) of the received signal s(t). The WD of many FM chirp signals is highly concentrated above a 2-D curve in the time-frequency plane that corresponds with the signal\u27s instantaneous frequency. The contours that are produced by properly thresholding the WD are hence generalized lines in the ( omega ,t,t**2) space. Hence, the tracking problem for both cases reduces to the simpler problem of tracking generalized lines, and is done using unsupervised weighted maximum-likelihood clustering, and minimum-mean-square estimation
Tracking of Unknown Nonstationary Chirp Signals Using Unsupervised Clustering in the Wigner Distribution Space
This paper is concerned with the problems of 1) detecting the presence of one or more FM chirp signals embedded in noise, and 2) tracking or estimating the unknown, time-varying instantaneous frequency of each chirp component. No prior knowledge is assumed about the number of chirp signals present, the parameters of each chirp, or how the parameters change with time. A detection/estimation algorithm is proposed that uses the Wigner distribution transform to find the best piecewise cubic approximation to each chirp’s phase function. The first step of the WD based algorithm consists of properly thresholding the WD of the received signal to produce contours in the time-frequency plane that approximate the instantaneous frequency of each chirp component. These contours can then be approximated as generalized lines in the (to, t, t2) space. The number of chirp signals (or equivalently, generalized lines) present is determined using maximum likelihood segmentation. Minimum mean square estimation techniques are used to estimate the unknown phase parameters of each chirp component. We demonstrate that for the cases of i) nonoverlapping linear or nonlinear FM chirp signals embedded in noise or ii) overlapping linear FM chirp signals embedded in noise, the approach is very robust, highly reliable, and can operate efficiently in low signal-to-noise environments where it is hard for even trained operators to detect the presence of chirps while looking at the WD plots of the overall signal. For multicomponent signals, the proposed technique is able to suppress noise as well as the troublesome cross WD components that arise due to the bilinear nature of the WD. © 1993 IEE