7,753 research outputs found

    Gravity-driven draining of a thin rivulet with constant width down a slowly varying substrate

    Get PDF
    The locally unidirectional gravity-driven draining of a thin rivulet with constant width but slowly varying contact angle down a slowly varying substrate is considered. Specifically, the flow of a rivulet in the azimuthal direction from the top to the bottom of a large horizontal cylinder is investigated. In particular, it is shown that, despite behaving the same locally, this flow has qualitatively different global behaviour from that of a rivulet with constant contact angle but slowly varying width. For example, whereas in the case of constant contact angle there is always a rivulet that runs all the way from the top to the bottom of the cylinder, in the case of constant width this is possible only for sufficiently narrow rivulets. Wider rivulets with constant width are possible only between the top of the cylinder and a critical azimuthal angle on the lower half of the cylinder. Assuming that the contact lines de-pin at this critical angle (where the contact angle is zero) the rivulet runs from the critical angle to the bottom of the cylinder with zero contact angle, monotonically decreasing width and monotonically increasing maximum thickness. The total mass of fluid on the cylinder is found to be a monotonically increasing function of the value of the constant width

    A thin rivulet or ridge subject to a uniform transverse shear stress at its free surface due to an external airflow

    Get PDF
    We use the lubrication approximation to analyse three closely related problems involving a thin rivulet or ridge (i.e. a two-dimensional droplet) of fluid subject to a prescribed uniform transverse shear stress at its free surface due to an external airflow, namely a rivulet draining under gravity down a vertical substrate, a rivulet driven by a longitudinal shear stress at its free surface, and a ridge on a horizontal substrate, and find qualitatively similar behaviour for all three problems. We show that, in agreement with previous numerical studies, the free surface profile of an equilibrium rivulet/ridge with pinned contact lines is skewed as the shear stress is increased from zero, and that there is a maximum value of the shear stress beyond which no solution with prescribed semi-width is possible. In practice, one or both of the contact lines will de-pin before this maximum value of the shear stress is reached, and so we consider situations in which the rivulet/ridge de-pins at one or both contact lines. In the case of de-pinning only at the advancing contact line, the rivulet/ridge is flattened and widened as the shear stress is increased from its critical value, and there is a second maximum value of the shear stress beyond which no solution with a prescribed advancing contact angle is possible. In contrast, in the case of de-pinning only at the receding contact line, the rivulet/ridge is thickened and narrowed as the shear stress is increased from its critical value, and there is a solution with a prescribed receding contact angle for all values of the shear stress. In general, in the case of de-pinning at both contact lines there is a critical “yield” value of the shear stress beyond which no equilibrium solution is possible and the rivulet/ridge will evolve unsteadily. In an Appendix we show that an equilibrium rivulet/ridge with prescribed flux/area is quasi-statically stable to two-dimensional perturbations

    A thin rivulet or ridge subject to a uniform transverse\ud shear stress at its free surface due to an external airflow

    Get PDF
    We use the lubrication approximation to analyse three closely related problems involving a thin rivulet or ridge (i.e. a two-dimensional droplet) of fluid subject to a prescribed uniform transverse shear stress at its free surface due to an external airflow, namely a rivulet draining under gravity down a vertical substrate, a rivulet driven by a longitudinal shear stress at its free surface, and a ridge on a horizontal substrate, and find qualitatively similar behaviour for all three problems. We show that, in agreement with previous numerical studies, the free surface profile of an equilibrium rivulet/ridge with pinned contact lines is skewed as the shear stress is increased from zero, and that there is a maximum value of the shear stress beyond which no solution with prescribed semi-width is possible. In practice, one or both of the contact lines will de-pin before this maximum value of the shear stress is reached, and so we consider situations in which the rivulet/ridge de-pins at one or both contact lines. In the case of de-pinning only at the advancing contact line, the rivulet/ridge is flattened and widened as the shear stress is increased from its critical value, and there is a second maximum value of the shear stress beyond which no solution with a prescribed advancing contact angle is possible. In contrast, in the case of de-pinning only at the receding contact line, the rivulet/ridge is thickened and narrowed as the shear stress is increased from its critical value, and there is a solution with a prescribed receding contact angle for all values of the shear stress. In general, in the case of de-pinning at both contact lines there is a critical “yield” value of the shear stress beyond which no equilibrium solution is possible and the rivulet/ridge will evolve unsteadily. In an Appendix we show that an equilibrium rivulet/ridge with prescribed flux/area is quasi-statically stable to two-dimensional perturbations

    Looking Beyond Intellectual Property in Resolving Protection of Intangible Cultural Heritage of Indigenous Peoples

    Get PDF
    While modern indigenous artists, and especially collectives, have been able to resort to traditional property rights concerning moveable cultural property, many native peoples have found their claims to ownership of their intangible cultural property, such as motifs, songs, prayers, ceremonies, music, legends and folklore, frustrated by the limits of established intellectual property and other legal regimes. These groups face commoditization and commercialization problems, but are stuck in a catch-22 by rejecting intellectual property regimes but facing the consequence of lost control over their own cultural property. This article evaluates the various claims and desires of indigenous peoples, and others whose needs arguably justify specific legal recognition and protection, against the background of the often conflicting constitutional and social policies that establish the structural framework of modern democratic societies, paying particular attention to the policies underlying intellectual property law and the basic human rights of free speech and free expression. The authors consider the social policy tradeoffs that are involved in recognizing, or not recognizing, intellectual property rights in indigenous cultural property. They conclude that the legitimate concerns of indigenous people can be accommodated without recognizing new intellectual property rights, either through modest reinterpretation of existing legal regimes concerning contract, privacy, and unfair competition law, or through carefully tailored but general statutory amendment or incrementally developed common law principles aimed at leveling what might otherwise be seen as an unfair playing field. Intellectual property rights seem to be an unsatisfactory foundation on which to build a viable cultural heritage legal edifice. Rather than try to fit the justifiable claims of indigenous peoples into legal property-rights categories that were not designed to accommodate their essential characteristics, this article focuses on those aspects of indigenous peoples\u27 claims that can be addressed outside the intellectual property rights regimes of patent and copyright. Traditional concepts of contract, privacy, trade secret, and trademark can go a long way in the desired direction. This approach, however, would not recognize all the claims that have been asserted on behalf of indigenous peoples

    Fat transforms ascorbic acid from inhibiting to promoting acid-catalysed N-nitrosation

    Get PDF
    <b>Background</b>: The major potential site of acid nitrosation is the proximal stomach, an anatomical site prone to a rising incidence of metaplasia and adenocarcinoma. Nitrite, a pre-carcinogen present in saliva, can be converted to nitrosating species and N-nitroso compounds by acidification at low gastric pH in the presence of thiocyanate. <b>Aims</b>: To assess the effect of lipid and ascorbic acid on the nitrosative chemistry under conditions simulating the human proximal stomach. <b>Methods</b>: The nitrosative chemistry was modelled in vitro by measuring the nitrosation of four secondary amines under conditions simulating the proximal stomach. The N-nitrosamines formed were measured by gas chromatography–ion-trap tandem mass spectrometry, while nitric oxide and oxygen levels were measured amperometrically. <b>Results</b>: In absence of lipid, nitrosative stress was inhibited by ascorbic acid through conversion of nitrosating species to nitric oxide. Addition of ascorbic acid reduced the amount of N-nitrosodimethylamine formed by fivefold, N-nitrosomorpholine by .1000-fold, and totally prevented the formation of N-nitrosodiethylamine and N-nitrosopiperidine. In contrast, when 10% lipid was present, ascorbic acid increased the amount of Nnitrosodimethylamine, N-nitrosodiethylamine and N-nitrosopiperidine formed by approximately 8-, 60- and 140-fold, respectively, compared with absence of ascorbic acid. <b>Conclusion</b>: The presence of lipid converts ascorbic acid from inhibiting to promoting acid nitrosation. This may be explained by nitric oxide, formed by ascorbic acid in the aqueous phase, being able to regenerate nitrosating species by reacting with oxygen in the lipid phase

    Strongly coupled interaction between a ridge of fluid and an inviscid airflow

    Get PDF
    The behaviour of a steady thin sessile or pendent ridge of fluid on an inclined planar substrate which is strongly coupled to the external pressure gradient a rising from an inviscid airflow parallel to the substrate far from the ridge is described. When the substrate is nearly horizontal a very wide ridge can be supported against gravity by capillary and/or external pressure forces; otherwise only a narrower (but still wide) ridge can be supported. Classical thin-aerofoil theory is adapted to obtain the governing singular integro-differential equation for the profile of the ridge in each case. Attention is focused mainly on the case of a very wide sessile ridge. The effect of strengthening the airflow is to push a pinned ridge down near to its edges but to pull it up near to its middle. At a critical airflow strength the upslope contact angle reaches the receding contact angle at which the upslope contact line de-pins, and continuing to increase the airflow strength beyond this critical value results in the de-pinned ridge becoming narrower, thicker and closer to being symmetric in the limit of a strong airflow. The effect of tilting the substrate is to skew a pinned ridge in the downslope direction. Depending on the values of the advancing and receding contact angles, the ridge may first de-pin at either the upslope or the downslope contact line but, in general, eventually both contact lines de-pin. The special cases in which only one of the contact lines de-pins are also considered. It is also shown that the behaviour of a very wide pendent ridge is qualitatively similar to that of a very wide sessile ridge, while the important qualitative difference between the behaviour of a very wide ridge and a narrower ridge is that, in general, for the latter one or both of the contact lines may never de-pin

    Implementation of the Crisis Resolution Team model in adult mental health settings: a systematic review.

    Get PDF
    Crisis Resolution Teams (CRTs) aim to offer an alternative to hospital admission during mental health crises, providing rapid assessment, home treatment, and facilitation of early discharge from hospital. CRTs were implemented nationally in England following the NHS Plan of 2000. Single centre studies suggest CRTs can reduce hospital admissions and increase service users' satisfaction: however, there is also evidence that model implementation and outcomes vary considerably. Evidence on crucial characteristics of effective CRTs is needed to allow team functioning to be optimised. This review aims to establish what evidence, if any, is available regarding the characteristics of effective and acceptable CRTs

    Inorganic nitrogen and glucose additions alter the short-term formation efficiency of mineral associated organic matter carbon

    Get PDF
    Carbon within mineral associated organic matter (MAOM) is an important persistent form of soil organic carbon (SOC). However, processes driving the retention of new labile C in MAOM are not fully understood. We investigated the effects of glucose and ammonium nitrate (AN) addition on the short-term (72 h) retention of applied 13C-glucose within MAOM. We found an interactive effect of AN addition with the glucose addition rate. Higher rates of glucose addition resulted in proportionally less glucose-C retained, indicating lower MAOM-C formation efficiency. Addition of AN only altered the proportional retention of glucose where glucose was applied at the lowest rate. In this instance glucose-13C recovery increased with AN addition. However, after 72 h there was no treatment difference in total MAOM-C, indicating that any changes in formation efficiency as a result of AN and glucose additions, did not result in differences in total MAOM-C in the short-term. Whether and how this affects the medium and longer-term dynamics of MAOM-C requires further investigation
    corecore