37 research outputs found

    Prolonged hemophagocytic lymphohistiocytosis syndrome as an initial presentation of Hodgkin lymphoma: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Hemophagocytic lymphohistiocytosis is an immune-mediated syndrome that typically has a rapidly progressive course that can result in pancytopenia, coagulopathy, multi-system organ failure and death.</p> <p>Case presentation</p> <p>A 57-year-old Caucasian woman was referred in fulminant hemophagocytic lymphohistiocytosis, with fever, pancytopenia, splenomegaly, mental status changes and respiratory failure. She was found to have stage IV classical Hodgkin lymphoma, in addition to Epstein-Barr virus and cytomegalovirus viremia. Her presentation was preceded by a 3-year prodrome consisting of cytopenia and fever that were partially controlled by steroids and azathioprine.</p> <p>Conclusion</p> <p>Fulminant hemophagocytic lymphohistiocytosis may follow a prodromal phase that possesses features suggestive of a chronic form of hemophagocytic lymphohistiocytosis, but which may also resemble immune cytopenias of other causes. A diagnosis of hemophagocytic lymphohistiocytosis should be considered in the setting of chronic pancytopenia.</p

    Neutralization of Botulinum Neurotoxin by a Human Monoclonal Antibody Specific for the Catalytic Light Chain

    Get PDF
    Background: Botulinum neurotoxins (BoNT) are a family of category A select bioterror agents and the most potent biological toxins known. Cloned antibody therapeutics hold considerable promise as BoNT therapeutics, but the therapeutic utility of antibodies that bind the BoNT light chain domain (LC), a metalloprotease that functions in the cytosol of cholinergic neurons, has not been thoroughly explored. Methods and Findings: We used an optimized hybridoma method to clone a fully human antibody specific for the LC of serotype A BoNT (BoNT/A). The 4LCA antibody demonstrated potent in vivo neutralization when administered alone and collaborated with an antibody specific for the HC. In Neuro-2a neuroblastoma cells, the 4LCA antibody prevented the cleavage of the BoNT/A proteolytic target, SNAP-25. Unlike an antibody specific for the HC, the 4LCA antibody did not block entry of BoNT/A into cultured cells. Instead, it was taken up into synaptic vesicles along with BoNT/A. The 4LCA antibody also directly inhibited BoNT/A catalytic activity in vitro. Conclusions: An antibody specific for the BoNT/A LC can potently inhibit BoNT/A in vivo and in vitro, using mechanisms not previously associated with BoNT-neutralizing antibodies. Antibodies specific for BoNT LC may be valuable components o

    hTERT promoter activity and CpG methylation in HPV-induced carcinogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Activation of telomerase resulting from deregulated hTERT expression is a key event during high-risk human papillomavirus (hrHPV)-induced cervical carcinogenesis. In the present study we examined hTERT promoter activity and its relation to DNA methylation as one of the potential mechanisms underlying deregulated hTERT transcription in hrHPV-transformed cells.</p> <p>Methods</p> <p>Using luciferase reporter assays we analyzed hTERT promoter activity in primary keratinocytes, HPV16- and HPV18-immortalized keratinocyte cell lines and cervical cancer cell lines. In the same cells as well as cervical specimens we determined hTERT methylation by bisulfite sequencing analysis of the region spanning -442 to +566 (relative to the ATG) and quantitative methylation specific PCR (qMSP) analysis of two regions flanking the hTERT core promoter.</p> <p>Results</p> <p>We found that in most telomerase positive cells increased hTERT core promoter activity coincided with increased hTERT mRNA expression. On the other hand basal hTERT promoter activity was also detected in telomerase negative cells with no or strongly reduced hTERT mRNA expression levels. In both telomerase positive and negative cells regulatory sequences flanking both ends of the core promoter markedly repressed exogenous promoter activity.</p> <p>By extensive bisulfite sequencing a strong increase in CpG methylation was detected in hTERT positive cells compared to cells with no or strongly reduced hTERT expression. Subsequent qMSP analysis of a larger set of cervical tissue specimens revealed methylation of both regions analyzed in 100% of cervical carcinomas and 38% of the high-grade precursor lesions, compared to 9% of low grade precursor lesions and 5% of normal controls.</p> <p>Conclusions</p> <p>Methylation of transcriptionally repressive sequences in the hTERT promoter and proximal exonic sequences is correlated to deregulated hTERT transcription in HPV-immortalized cells and cervical cancer cells. The detection of DNA methylation at these repressive regions may provide an attractive biomarker for early detection of cervical cancer.</p

    Hypermethylation of the DLC1 CpG island does not alter gene expression in canine lymphoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study is a comparative epigenetic evaluation of the methylation status of the <it>DLC1 </it>tumor suppressor gene in naturally-occurring canine lymphoma. Canine non-Hodgkin's lymphoma (NHL) has been proposed to be a relevant preclinical model that occurs spontaneously and may share causative factors with human NHL due to a shared home environment. The canine <it>DLC1 </it>mRNA sequence was derived from normal tissue. Using lymphoid samples from 21 dogs with NHL and 7 normal dogs, the methylation status of the promoter CpG island of the gene was defined for each sample using combined bisulfite restriction analysis (COBRA), methylation-specific PCR (MSP), and bisulfite sequencing methods. Relative gene expression was determined using real-time PCR.</p> <p>Results</p> <p>The mRNA sequence of canine <it>DLC1 </it>is highly similar to the human orthologue and contains all protein functional groups, with 97% or greater similarity in functional regions. Hypermethylation of the 5' and 3' flanking regions of the promoter was statistically significantly associated with the NHL phenotype, but was not associated with silencing of expression or differences in survival.</p> <p>Conclusion</p> <p>The canine <it>DLC1 </it>is constructed highly similarly to the human gene, which has been shown to be an important tumor suppressor in many forms of cancer. As in human NHL, the promoter CpG island of <it>DLC1 </it>in canine NHL samples is abnormally hypermethylated, relative to normal lymphoid tissue. This study confirms that hypermethylation occurs in canine cancers, further supporting the use of companion dogs as comparative models of disease for evaluation of carcinogenesis, biomarker diagnosis, and therapy.</p

    Mechanisms of human telomerase reverse transcriptase (hTERT) regulation: clinical impacts in cancer

    Get PDF
    Background Limitless self-renewal is one of the hallmarks of cancer and is attained by telomere maintenance, essentially through telomerase (hTERT) activation. Transcriptional regulation of hTERT is believed to play a major role in telomerase activation in human cancers. Main body The dominant interest in telomerase results from its role in cancer. The role of telomeres and telomere maintenance mechanisms is well established as a major driving force in generating chromosomal and genomic instability. Cancer cells have acquired the ability to overcome their fate of senescence via telomere length maintenance mechanisms, mainly by telomerase activation. hTERT expression is up-regulated in tumors via multiple genetic and epigenetic mechanisms including hTERT amplifications, hTERT structural variants, hTERT promoter mutations and epigenetic modifications through hTERT promoter methylation. Genetic (hTERT promoter mutations) and epigenetic (hTERT promoter methylation and miRNAs) events were shown to have clinical implications in cancers that depend on hTERT activation. Knowing that telomeres are crucial for cellular self-renewal, the mechanisms responsible for telomere maintenance have a crucial role in cancer diseases and might be important oncological biomarkers. Thus, rather than quantifying TERT expression and its correlation with telomerase activation, the discovery and the assessment of the mechanisms responsible for TERT upregulation offers important information that may be used for diagnosis, prognosis, and treatment monitoring in oncology. Furthermore, a better understanding of these mechanisms may promote their translation into effective targeted cancer therapies. Conclusion Herein, we reviewed the underlying mechanisms of hTERT regulation, their role in oncogenesis, and the potential clinical applications in telomerase-dependent cancers.info:eu-repo/semantics/publishedVersio

    Epigenetic plasticity of hTERT gene promoter determines retinoid capacity to repress telomerase in maturation-resistant acute promyelocytic leukemia cells

    No full text
    The expression of hTERT gene, encoding the catalytic subunit of telomerase, is a feature of most cancer cells. Changes in the chromatin environment of its promoter and binding of transcriptional factors have been reported in differentiating cells when its transcription is repressed. However, it is not clear whether these changes are directly involved in this repression or only linked to differentiation. In a maturation-resistant acute promyelocytic leukemia (APL) cell line (NB4-LR1), we have previously identified a new pathway of retinoid-induced hTERT repression independent of differentiation. Using a variant of this cell line (NB4-LR1SFD), which resists to this repression, we show that although distinct patterns of histone modifications and transcription factor binding at the proximal domain of hTERT gene promoter could concur to modulate its expression, this region is not sufficient to the on/off switch of hTERT by retinoids. DNA methylation analysis of the hTERT promoter led to the identification of two distinct functional domains, a proximal one, fully unmethylated in both cell lines, and a distal one, significantly methylated in NB4-LR1SFD cells, whose methylation was further re-enforced by retinoid treatment. Interestingly, we showed that the binding to this distal domain of a known hTERT repressor, WT1, was defective only in NB4-LR1SFD cells. We propose that epigenetic modifications targeting this distal region could modulate the binding of hTERT repressors and account either for hTERT reactivation and resistance to retinoid-induced hTERT downregulation

    Transcriptional Silencing of a Novel hTERT Reporter Locus during In Vitro Differentiation of Mouse Embryonic Stem Cells

    No full text
    The human telomerase reverse transcriptase hTERT is highly expressed in undifferentiated embryonic cells and silenced in the majority of somatic cells. To investigate the mechanisms of hTERT silencing, we have developed a novel reporter using a bacterial artificial chromosome (BAC) that contained the entire hTERT gene and its neighboring loci, hCRR9 and hXtrp2. Firefly and Renilla luciferases were used to monitor transcription from the hTERT and hCRR9 promoters, respectively. In mouse embryonic stem cells stably integrated with the BAC reporter, both hTERT and hCRR9 promoters were highly expressed. Upon differentiation into embryoid bodies and further into mineral-producing osteogenic cells, the hTERT promoter activity decreased progressively, whereas the hCRR9 promoter remained highly active, both resembling their endogenous counterparts. In fully differentiated cells, the hTERT promoter was completely silenced and adopted a chromatin structure that was similar to its native counterpart in human cells. Inhibition of histone deacetylases led to the opening of the hTERT promoter and partially relieved repression, suggesting that histone deacetylation was necessary but not sufficient for hTERT silencing. Thus, our result demonstrated that developmental silencing of the human TERT locus could be recapitulated in a chromosomal position-independent manner during the differentiation of mouse embryonic stem cells
    corecore