7,673 research outputs found

    Energy dependent wavelength of the ion induced nanoscale ripple

    Get PDF
    Wavelength variation of ion beam induced nanoscale ripple structure has received much attention recently due to its possible application in nanotechnology. We present here results of Ar+^+ bombarded Si in the energy range 50 to 140 keV to demonstrate that with beam scanning the ripple wavelength increases with ion energy and decreases with energy for irradiation without ion beam scanning. An expression for the energy dependence of ripple wavelength is proposed taking into simultaneous effect of thermally activated surface diffusion and ion induced effective surface diffusion.Comment: REVTeX (4 pages), 3 EPS figure

    Production of J/Ψ\Psi-Particles at RHIC and LHC energies: An Alternative `Psi'-chology

    Full text link
    We attempt here to understand successfully some crucial aspects of J/ΨJ/\Psi-production in some high energy nuclear collisions in the light of a non-standard framework outlined in the text. It is found that the results arrived at with this main working approach here is fairly in good agreement with both the measured data and the results obtained on the basis of some other models of the `standard' variety. Impact and implications of this comparative study have also been precisely highlighted in the end.Comment: 14 pages, 7 figures, to appear in Open Journal of Microphysics. arXiv admin note: substantial text overlap with arXiv:0906.2612, arXiv:1110.5582, and overlap with arXiv:1103.6269, arXiv:1007.451

    Constraints on Fluid Dynamics from Equilibrium Partition Functions

    Full text link
    We study the thermal partition function of quantum field theories on arbitrary stationary background spacetime, and with arbitrary stationary background gauge fields, in the long wavelength expansion. We demonstrate that the equations of relativistic hydrodynamics are significantly constrained by the requirement of consistency with any partition function. In examples at low orders in the derivative expansion we demonstrate that these constraints coincide precisely with the equalities between hydrodynamical transport coefficients that follow from the local form of the second law of thermodynamics. In particular we recover the results of Son and Surowka on the chiral magnetic and chiral vorticity flows, starting from a local partition function that manifestly reproduces the field theory anomaly, without making any reference to an entropy current. We conjecture that the relations between transport coefficients that follow from the second law of thermodynamics agree to all orders in the derivative expansion with the constraints described in this paper.Comment: Typos corrected, References adde
    corecore