4 research outputs found

    Surface operators in 5d gauge theories and duality relations

    Get PDF
    We study half-BPS surface operators in 5d N=1 gauge theories compactified on a circle. Using localization methods and the twisted chiral ring relations of coupled 3d/5d quiver gauge theories, we calculate the twisted chiral superpotential that governs the infrared properties of these surface operators. We make a detailed analysis of the localization integrand, and by comparing with the results from the twisted chiral ring equations obtain constraints on the 3d and 5d Chern-Simons levels so that the instanton partition function does not depend on the choice of integration contour. For these values of the Chern-Simons couplings, we comment on how the distinct quiver theories that realize the same surface operator are related to each other by Aharony-Seiberg dualities.Comment: 39 pages. v2: A few sentences rephrased, references added, and typos corrected. Matches version published in JHE

    Surface operators, chiral rings and localization in N = 2 gauge theories

    Get PDF
    We study half-BPS surface operators in supersymmetric gauge theories in four and five dimensions following two different approaches. In the first approach we analyze the chiral ring equations for certain quiver theories in two and three dimensions, coupled respectively to four- and five-dimensional gauge theories. The chiral ring equations, which arise from extremizing a twisted chiral superpotential, are solved as power series in the infrared scales of the quiver theories. In the second approach we use equivariant localization and obtain the twisted chiral superpotential as a function of the Coulomb moduli of the four- and five-dimensional gauge theories, and find a perfect match with the results obtained from the chiral ring equations. In the five-dimensional case this match is achieved after solving a number of subtleties in the localization formulas which amounts to choosing a particular residue prescription in the integrals that yield the Nekrasov-like partition functions for ramified instantons. We also comment on the necessity of including Chern-Simons terms in order to match the superpotentials obtained from dual quiver descriptions of a given surface operator.Comment: 41 pages. v3: typos corrected in the text and in some formulae. Some sentences rephrased according to the suggestions of the referee. Matches the version published on JHE

    Surface operators, dual quivers and contours

    Get PDF
    We study half-BPS surface operators in four dimensional N=2 SU(N) gauge theories, and analyze their low-energy effective action on the four dimensional Coulomb branch using equivariant localization. We also study surface operators as coupled 2d/4d quiver gauge theories with an SU(N) flavour symmetry. In this description, the same surface operator can be described by different quivers that are related to each other by two dimensional Seiberg duality. We argue that these dual quivers correspond, on the localization side, to distinct integration contours that can be determined by the Fayet-Iliopoulos parameters of the two dimensional gauge nodes. We verify the proposal by mapping the solutions of the twisted chiral ring equations of the 2d/4d quivers onto individual residues of the localization integrand.Comment: 42 pages. v2: Sections 4 and 5 partially restructured in order to describe in a more compact ad unified way the association of contours to quiver

    Chiral trace relations in N=2\mathcal N=2^* supersymmetric gauge theories

    No full text
    corecore