254 research outputs found
Recommended from our members
The Influence of Transient Thermal Gradients and Substrate Constraint on Delamination of Thermal Barrier Coatings
A systematic study of factors affecting the delamination energy release rate and mode mix of a thermal barrier coating attached to a substrate is presented accounting for the influence of thermal gradients combined with rapid hot surface cooling. Transient thermal gradients induce stress gradients through the coating and substrate, which produce overall bending if the substrate is not very thick and if it is not constrained. Due to their influences on the coating stresses, substrate thickness and constraint are important aspects of the mechanics of delamination of coating-substrate systems, which must be considered when laboratory tests are designed and for lifetime assessment under in-service conditions. Temperature gradients in the hot state combined with rapid cooling give rise to a maximum energy release rate for delamination that occurs in the early stage of cooling and that can be considerably larger than the driving force for delamination in the cold state. The rates of cooling that give rise to a large early stage energy release rate are identified.Engineering and Applied Science
Retrospective analysis of patients’ experience to intravesical Bacillus Calmette-Guerin (BCG)
Why?
•
Gold standard
•
Bladder cancer incidence rates are highest in developed countries, especially Northern America and Europe
•
BCG treatment induction & maintenance has significant benefits, but also has significant side effects that tend to be seen within the first 12 months of treatment
•
To analyse the reasons for treatment interruption in everyday clinical practice in a large district hospita
Barriers to ideal outcomes after pediatric liver transplantation
Long‐term survival for children who undergo LT is now the rule rather than the exception. However, a focus on the outcome of patient or graft survival rates alone provides an incomplete and limited view of life for patients who undergo LT as an infant, child, or teen. The paradigm has now appropriately shifted to opportunities focused on our overarching goals of “surviving and thriving” with long‐term allograft health, freedom of complications from long‐term immunosuppression, self‐reported well‐being, and global functional health. Experts within the liver transplant community highlight clinical gaps and potential barriers at each of the pretransplant, intra‐operative, early‐, medium‐, and long‐term post‐transplant stages toward these broader mandates. Strategies including clinical research, innovation, and quality improvement targeting both traditional as well as PRO are outlined and, if successfully leveraged and conducted, would improve outcomes for recipients of pediatric LT.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151257/1/petr13537.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151257/2/petr13537_am.pd
Chaos in Time Dependent Variational Approximations to Quantum Dynamics
Dynamical chaos has recently been shown to exist in the Gaussian
approximation in quantum mechanics and in the self-consistent mean field
approach to studying the dynamics of quantum fields. In this study, we first
show that any variational approximation to the dynamics of a quantum system
based on the Dirac action principle leads to a classical Hamiltonian dynamics
for the variational parameters. Since this Hamiltonian is generically nonlinear
and nonintegrable, the dynamics thus generated can be chaotic, in distinction
to the exact quantum evolution. We then restrict attention to a system of two
biquadratically coupled quantum oscillators and study two variational schemes,
the leading order large N (four canonical variables) and Hartree (six canonical
variables) approximations. The chaos seen in the approximate dynamics is an
artifact of the approximations: this is demonstrated by the fact that its onset
occurs on the same characteristic time scale as the breakdown of the
approximations when compared to numerical solutions of the time-dependent
Schrodinger equation.Comment: 10 pages (12 figures), RevTeX (plus macro), uses epsf, minor typos
correcte
Alternative Waste Forms for Electro-Chemical Salt Waste
This study was undertaken to examine alternate crystalline (ceramic/mineral) and glass waste forms for immobilizing spent salt from the Advanced Fuel Cycle Initiative (AFCI) electrochemical separations process. The AFCI is a program sponsored by U.S. Department of Energy (DOE) to develop and demonstrate a process for recycling spent nuclear fuel (SNF). The electrochemical process is a molten salt process for the reprocessing of spent nuclear fuel in an electrorefiner and generates spent salt that is contaminated with alkali, alkaline earths, and lanthanide fission products (FP) that must either be cleaned of fission products or eventually replaced with new salt to maintain separations efficiency. Currently, these spent salts are mixed with zeolite to form sodalite in a glass-bonded waste form. The focus of this study was to investigate alternate waste forms to immobilize spent salt. On a mole basis, the spent salt is dominated by alkali and Cl with minor amounts of alkaline earth and lanthanides. In the study reported here, we made an effort to explore glass systems that are more compatible with Cl and have not been previously considered for use as waste forms. In addition, alternate methods were explored with the hope of finding a way to produce a sodalite that is more accepting of as many FP present in the spent salt as possible. This study was done to investigate two different options: (1) alternate glass families that incorporate increased concentrations of Cl; and (2) alternate methods to produce a mineral waste form
Validation of U.S. mortality prediction models for hospitalized heart failure in the United Kingdom and Japan: Validation of risk models in decompensated heart failure
Aims: Prognostic models for hospitalised heart failure (HHF) were developed predominantly for patients of European origin in the United States of America; it is unclear whether they perform similarly in other health-care systems or for different ethnicities. We sought to validate published prediction models for HHF in the United Kingdom (UK) & Japan.Methods and Results: Patients in the UK (894) and Japan (3,158) were prospectively enrolled and similar in terms of sex (~60% men) and median age (~77 years). Models predicted that British patients would have a higher mortality than Japanese, which was indeed true both for in-hospital [4.8% vs 2.5%] and 180-day [20.7% vs 9.5%] mortality. The model c-statistics for the published/derivation [range 0.70-0.76] and Japanese [range 0.75-0.77] cohorts were similar and higher than for the UK [0.62-0.75] but models consistently over-estimated mortality in Japan. For in-hospital mortality, OPTIMIZE-HF performed best, providing similar discrimination in published/derivation, UK and Japanese cohorts [c-indices: 0.75 (0.74-0.77); 0.75 (0.68 - 0.81) and 0.77 (0.70 - 0.83)], and least over-estimated mortality in Japan. For 180-day mortality, the cstatistics for ASCEND-HF were similar in published/derivation [0.70] and UK [0.69 (0.64 - 0.74)] cohorts but higher in Japan [0.75 (0.71 - 0.79)]; calibration was good in the UK but again over-estimated mortality in Japan.Conclusion: Calibration of published prediction models appear moderately accurate and unbiased when applied to British patients but consistently overestimate mortality in Japan. Identifying the reason why patients in Japan have a better than predicted prognosis is of great interest
Mortality after admission for heart failure in the UK compared with Japan
Objective Mortality amongst patients hospitalised for heart failure (HHF) in Western and Asian countries may differ, but this has not been investigated using individual patient-level data (IPLD). We sought to remedy this through rigorous statistical analysis of HHF registries and variable selection from a systematic literature review.Methods and results IPLD from registries of HHF in Japan (n=3781) and the UK (n=894) were obtained. A systematic literature review identified 23 models for predicting outcome of HHF. Five variables appearing in 10 or more reports were strongly related to prognosis (systolic blood pressure, serum sodium concentration, age, blood urea nitrogen and creatinine). To compare mortality in the UK and Japan, variables were imputed in a propensity model using inverse probability of treatment weighting (IPTW) and IPTW with logistic regression (doubly robust IPTW). Overall, patients in the UK were sicker and in-patient and post-discharge mortalities were greater, suggesting that the threshold for hospital admission was higher. Covariate-adjusted in-hospital mortality was similar in the UK and Japan (IPTW OR: 1.14, 95% CI 0.70 to 1.86), but 180-day postdischarge mortality was substantially higher in the UK (doubly robust IPTW OR: 2.33, 95% CI 1.58 to 3.43).Conclusions Despite robust methods to adjust for differences in patient characteristics and disease severity, HHF patients in the UK have roughly twice the mortality at 180 days compared with those in Japan. Similar analyses should be done using other data sets and in other countries to determine the consistency of these findings and identify factors that might inform healthcare policy and improve outcomes
Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression
Multiple, complex molecular events characterize cancer development and progression(1,2). Deciphering the molecular networks that distinguish organ- confined disease from metastatic disease may lead to the identification of critical biomarkers for cancer invasion and disease aggressiveness. Although gene and protein expression have been extensively profiled in human tumours, little is known about the global metabolomic alterations that characterize neoplastic progression. Using a combination of high- throughput liquid- and- gas- chromatography- based mass spectrometry, we profiled more than 1,126 metabolites across 262 clinical samples related to prostate cancer ( 42 tissues and 110 each of urine and plasma). These unbiased metabolomic profiles were able to distinguish benign prostate, clinically localized prostate cancer and metastatic disease. Sarcosine, an N- methyl derivative of the amino acid glycine, was identified as a differential metabolite that was highly increased during prostate cancer progression to metastasis and can be detected non- invasively in urine. Sarcosine levels were also increased in invasive prostate cancer cell lines relative to benign prostate epithelial cells. Knockdown of glycine- N- methyl transferase, the enzyme that generates sarcosine from glycine, attenuated prostate cancer invasion. Addition of exogenous sarcosine or knockdown of the enzyme that leads to sarcosine degradation, sarcosine dehydrogenase, induced an invasive phenotype in benign prostate epithelial cells. Androgen receptor and the ERG gene fusion product coordinately regulate components of the sarcosine pathway. Here, by profiling the metabolomic alterations of prostate cancer progression, we reveal sarcosine as a potentially important metabolic intermediary of cancer cell invasion and aggressivity.Early Detection Research Network ; National Institutes of Health ; MTTC ; Clinical Translational Science Award ; Fund for Discovery of the University of Michigan Comprehensive Cancer Center ; University of Michigan Cancer Biostatistics Training Grant ; Doris Duke Charitable FoundationWe thank J. Granger for help in manuscript preparation, J. Siddiqui and R. Varambally for help with the clinical database, and A. Vellaichamy and S. Pullela for technical assistance. We thank K. Pienta for access to metastatic prostate cancer samples from the University of Michigan Prostate SPORE rapid autopsy programme. This work is supported in part by the Early Detection Research Network (A.M.C., J.T.W.), National Institutes of Health (A.S., S.P., J.B., T.M.R., D.G., G.S.O. and A.M.C.) and an MTTC grant (G.S.O. and A.S.). A.M.C. is supported by a Clinical Translational Science Award from the Burroughs Welcome Foundation. A. S. is supported by a grant from the Fund for Discovery of the University of Michigan Comprehensive Cancer Center. L. M. P. is supported by the University of Michigan Cancer Biostatistics Training Grant. A. M. C and S. P. are supported by the Doris Duke Charitable Foundation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62661/1/nature07762.pd
Defining binding efficiency and specificity of auxins for SCF(TIR1/AFB)-Aux/IAA co-receptor complex formation.
Structure-activity profiles for the phytohormone auxin have been collected for over 70 years, and a number of synthetic auxins are used in agriculture. Auxin classification schemes and binding models followed from understanding auxin structures. However, all of the data came from whole plant bioassays, meaning the output was the integral of many different processes. The discovery of Transport Inhibitor-Response 1 (TIR1) and the Auxin F-Box (AFB) proteins as sites of auxin perception and the role of auxin as molecular glue in the assembly of co-receptor complexes has allowed the development of a definitive quantitative structure-activity relationship for TIR1 and AFB5. Factorial analysis of binding activities offered two uncorrelated factors associated with binding efficiency and binding selectivity. The six maximum-likelihood estimators of Efficiency are changes in the overlap matrixes, inferring that Efficiency is related to the volume of the electronic system. Using the subset of compounds that bound strongly, chemometric analyses based on quantum chemical calculations and similarity and self-similarity indices yielded three classes of Specificity that relate to differential binding. Specificity may not be defined by any one specific atom or position and is influenced by coulomb matrixes, suggesting that it is driven by electrostatic forces. These analyses give the first receptor-specific classification of auxins and indicate that AFB5 is the preferred site for a number of auxinic herbicides by allowing interactions with analogues having van der Waals surfaces larger than that of indole-3-acetic acid. The quality factors are also examined in terms of long-standing models for the mechanism of auxin binding
Recommended from our members
A solution scan of societal options to reduce transmission and spread of respiratory viruses: SARS-CoV-2 as a case study.
Societal biosecurity - measures built into everyday society to minimize risks from pests and diseases - is an important aspect of managing epidemics and pandemics. We aimed to identify societal options for reducing the transmission and spread of respiratory viruses. We used SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) as a case study to meet the immediate need to manage the COVID-19 pandemic and eventually transition to more normal societal conditions, and to catalog options for managing similar pandemics in the future. We used a 'solution scanning' approach. We read the literature; consulted psychology, public health, medical, and solution scanning experts; crowd-sourced options using social media; and collated comments on a preprint. Here, we present a list of 519 possible measures to reduce SARS-CoV-2 transmission and spread. We provide a long list of options for policymakers and businesses to consider when designing biosecurity plans to combat SARS-CoV-2 and similar pathogens in the future. We also developed an online application to help with this process. We encourage testing of actions, documentation of outcomes, revisions to the current list, and the addition of further options
- …