5 research outputs found

    Entangled coherent states: teleportation and decoherence

    Get PDF
    When a superposition (α>α>)(|\alpha>-|-\alpha>) of two coherent states with opposite phase falls upon a 50-50 beamsplitter, the resulting state is entangled. Remarkably, the amount of entanglement is exactly 1 ebit, irrespective of α\alpha, as was recently discovered by O. Hirota and M. Sasaki. Here we discuss decoherence properties of such states and give a simple protocol that teleports one qubit encoded in Schr\"odinger cat statesComment: 11 pages LaTeX, 3 eps figures. Submitted to Phys. Rev.

    Gate fidelity of arbitrary single-qubit gates constrained by conservation laws

    Full text link
    Recent investigations show that conservation laws limit the accuracy of gate operations in quantum computing. The inevitable error under the angular momentum conservation law has been evaluated so far for the CNOT, Hadamard, and NOT gates for spin 1/2 qubits, while the SWAP gate has no constraint. Here, we extend the above results to general single-qubit gates. We obtain an upper bound of the gate fidelity of arbitrary single-qubit gates implemented under arbitrary conservation laws, determined by the geometry of the conservation law and the gate operation on the Bloch sphere as well as the size of the ancilla.Comment: Title changed; to appear in J. Phys. A: Math. Theor.; 19 pages, 2 figure

    Entangled states of light and their robustness against photon absorption

    No full text
    corecore