11 research outputs found

    The impact of seawater saturation state and bicarbonate ion concentration on calcification by new recruits of two Atlantic corals

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Coral Reefs 30 (2011): 321-328, doi:10.1007/s00338-010-0697-z.Rising concentrations of atmospheric CO2 are changing the carbonate chemistry of the oceans, a process known as ocean acidification (OA). Absorption of this CO2 by the surface oceans is increasing the amount of total dissolved inorganic carbon (DIC) and bicarbonate ion (HCO3 -) available for marine calcification, yet is simultaneously lowering the seawater pH and carbonate ion concentration ([CO3 2-]), and thus the saturation state of seawater with respect to aragonite (Ωar). We investigated the relative importance of [HCO3 -] versus [CO3 2-] for early calcification by new recruits (primary polyps settled from zooxanthellate larvae) of two tropical coral species, Favia fragum and Porites astreoides. The polyps were reared over a range of Ωar values, which were manipulated by both acid-addition at constant pCO2 (decreased total [HCO3 -] and [CO3 2-]) and by pCO2 elevation at constant alkalinity (increased [HCO3 -], decreased [CO3 2-]). Calcification after two weeks was quantified by weighing the complete skeleton (corallite) accreted by each polyp over the course of the experiment. Both species exhibited the same negative response to decreasing [CO3 2-] whether Ωar was lowered by acid-addition or by pCO2 elevation - calcification did not follow total DIC or [HCO3 -]. Nevertheless, the calcification response to decreasing [CO3 2-] was non-linear. A statistically significant decrease in calcification was only detected between Ωar = < 2.5 and Ωar = 1.1 – 1.5, where calcification of new recruits was reduced by 22 – 37 % per 1.0 decrease in Ωar. Our results differ from many previous studies that report a linear coral calcification response to OA, and from those showing that calcification increases with increasing [HCO3 -]. Clearly, the coral calcification response to OA is variable and complex. A deeper understanding of the biomineralization mechanisms and environmental conditions underlying these 3 variable responses is needed to support informed predictions about future OA impacts on corals and coral reefs.This study was supported by NSF award 0648157 (Cohen and McCorkle), NSF 1041106 (Cohen, McCorkle), NSF 1041052 (de Putron), the VITA foundation (de Putron), WHOI Ocean Life Institute (Cohen), PEI and EEB Departments at Princeton University, Bill and Anne Charrier, and the Anthony B. Evnin, Dean’s Roundtable, and Edmund Hayes Sr. senior thesis funds (Dillon)

    Biology and ecology of corals and fishes on the Bermuda platform

    No full text
    Series ISSN: 2213-719XStruan R. Smith, Samantha de Putron, Thad J. T. Murdoch, Joanna M. Pitt, and Ivan Nagelkerke

    Calcification by juvenile corals under heterotrophy and elevated CO[subscript 2]

    Get PDF
    Ocean acidification (OA) threatens the existence of coral reefs by slowing the rate of calcium carbonate (CaCO[subscript 3]) production of framework-building corals thus reducing the amount of CaCO3 the reef can produce to counteract natural dissolution. Some evidence exists to suggest that elevated levels of dissolved inorganic nutrients can reduce the impact of OA on coral calcification. Here, we investigated the potential for enhanced energetic status of juvenile corals, achieved via heterotrophic feeding, to modulate the negative impact of OA on calcification. Larvae of the common Atlantic golf ball coral, Favia fragum, were collected and reared for 3 weeks under ambient (421 μatm) or significantly elevated (1,311 μatm) CO[subscript 2] conditions. The metamorphosed, zooxanthellate spat were either fed brine shrimp (i.e., received nutrition from photosynthesis plus heterotrophy) or not fed (i.e., primarily autotrophic). Regardless of CO[subscript 2] condition, the skeletons of fed corals exhibited accelerated development of septal cycles and were larger than those of unfed corals. At each CO[subscript 2] level, fed corals accreted more CaCO[subscript 3] than unfed corals, and fed corals reared under 1,311 μatm CO[subscript 2] accreted as much CaCO[subscript 3] as unfed corals reared under ambient CO[subscript 2]. However, feeding did not alter the sensitivity of calcification to increased CO[subscript 2]; ∆ calcification/∆Ω was comparable for fed and unfed corals. Our results suggest that calcification rates of nutritionally replete juvenile corals will decline as OA intensifies over the course of this century. Critically, however, such corals could maintain higher rates of skeletal growth and CaCO[subscript 3] production under OA than those in nutritionally limited environments.National Science Foundation (U.S.) (OCE-1041106)National Science Foundation (U.S.) (OCE-1041052
    corecore