1,334 research outputs found

    Ecological science for ecosystem services and the stewardship of Natural Capital

    Get PDF
    1. National and international assessments are increasingly highlighting the unsustainable use of earth's natural resources in the face of population increase, growing material affluence and global change. In all likelihood, the use and degradation of natural resources will continue. 2. In contrast to resource depletion, the concept of natural capital emphasises how the environment is an asset to be managed, to ensure that the benefits which flow from it are sustained for future generations. These benefits are the ecosystem goods and services upon which all people rely for their continued survival and well-being both now and, ideally, in perpetuity. 3. Despite their importance, the evidence-base and quantitative understanding of links between biodiversity, ecosystem function and ecosystem services are insufficient to allow informed use and management. Moreover, the concepts of natural capital and ecosystem services are insufficiently mainstream to influence decisions that currently favour the production of food and fibre rather than less tangible services such as climate regulation, air and water purification, pollination or the contributions of environment to health. 4. There are specific challenges to ecological science in this interdisciplinary endeavour: specifically, to develop frameworks for identifying and monitoring natural capital; to parameterise factors affecting ecosystem services and their resilience to change; to integrate the complexity of ecological systems into ecosystem service valuation; and to characterise the synergies and trade-offs between ecosystem services in different management and policy scenarios. 5. Synthesis and applications. The five papers in this Special Profile exemplify just some of the leading work through which ecologists in the UK are contributing nationally and internationally to these needs, stemming from the UK National Ecosystem Assessment - the first national scale exercise of its type in the world. We expect a major, worldwide increase in work on ecosystem services and natural capital in future as decisions on ecosystem use of management are squeezed increasingly between the needs of exploitation and protection

    Ecological indicators for abandoned mines, Phase 1: Review of the literature

    Get PDF
    Mine waters have been identified as a significant issue in the majority of Environment Agency draft River Basin Management Plans. They are one of the largest drivers for chemical pollution in the draft Impact Assessment for the Water Framework Directive (WFD), with significant failures of environmental quality standards (EQS) for metals (particularly Cd, Pb, Zn, Cu, Fe) in many rivers linked to abandoned mines. Existing EQS may be overprotective of aquatic life which may have adapted over centuries of exposure. This study forms part of a larger project to investigate the ecological impact of metals in rivers, to develop water quality targets (alternative objectives for the WFD) for aquatic ecosystems impacted by long-term mining pollution. The report reviews literature on EQS failures, metal effects on aquatic biota and effects of water chemistry, and uses this information to consider further work. A preliminary assessment of water quality and biology data for 87 sites across Gwynedd and Ceredigion (Wales) shows that existing Environment Agency water quality and biology data could be used to establish statistical relations between chemical variables and metrics of ecological quality. Visual representation and preliminary statistical analyses show that invertebrate diversity declines with increasing zinc concentration. However, the situation is more complex because the effects of other metals are not readily apparent. Furthermore, pH and aluminium also affect streamwater invertebrates, making it difficult to tease out toxicity due to individual mine-derived metals. The most characteristic feature of the plant communities of metal-impacted systems is a reduction in diversity, compared to that found in comparable unimpacted streams. Some species thrive in the presence of heavy metals, presumably because they are able to develop metal tolerance, whilst others consistently disappear. Effects are, however, confounded by water chemistry, particularly pH. Tolerant species are spread across a number of divisions of photosynthetic organisms, though green algae, diatoms and blue-green algae are usually most abundant, often thriving in the absence of competition and/or grazing. Current UK monitoring techniques focus on community composition and, whilst these provide a sampling and analytical framework for studies of metal impacts, the metrics are not sensitive to these impacts. There is scope for developing new metrics, based on community-level analyses and for looking at morphological variations common in some taxa at elevated metal concentrations. On the whole, community-based metrics are recommended, as these are easier to relate to ecological status definitions. With respect to invertebrates and fish, metals affect individuals, population and communities but sensitivity varies among species, life stages, sexes, trophic groups and with body condition. Acclimation or adaptation may cause varying sensitivity even within species. Ecosystem-scale effects, for example on ecological function, are poorly understood. Effects vary between metals such as cadmium, copper, lead, chromium, zinc and nickel in order of decreasing toxicity. Aluminium is important in acidified headwaters. Biological effects depend on speciation, toxicity, availability, mixtures, complexation and exposure conditions, for example discharge (flow). Current water quality monitoring is unlikely to detect short-term episodic increases in metal concentrations or evaluate the bioavailability of elevated metal concentrations in sediments. These factors create uncertainty in detecting ecological impairment in metal-impacted ecosystems. Moreover, most widely used biological indicators for UK freshwaters were developed for other pressures and none distinguishes metal impacts from other causes of impairment. Key ecological needs for better regulation and management of metals in rivers include: i) models relating metal data to ecological data that better represent influences on metal toxicity; ii) biodiagnostic indices to reflect metal effects; iii) better methods to identify metal acclimation or adaptation among sensitive taxa; iv) better investigative procedures to isolate metal effects from other pressures. Laboratory data on the effects of water chemistry on cationic metal toxicity and bioaccumulation show that a number of chemical parameters, particularly pH, dissolved organic carbon (DOC) and major cations (Na, Mg, K, Ca) exert a major influence on the toxicity and/or bioaccumulation of cationic metals. The biotic ligand model (BLM) provides a conceptual framework for understanding these water chemistry effects as a combination of the influence of chemical speciation, and metal uptake by organisms in competition with H+ and other cations. In some cases where the BLM cannot describe effects, empirical bioavailable models have been successfully used. Laboratory data on the effects of metal mixtures across different water chemistries are sparse, with implications for transferring understanding to mining-impacted sites in the field where mixture effects are likely. The available field data, although relatively sparse, indicate that water chemistry influences metal effects on aquatic ecosystems. This occurs through complexation reactions, notably involving dissolved organic matter and metals such as Al, Cu and Pb. Secondly, because bioaccumulation and toxicity are partly governed by complexation reactions, competition effects among metals, and between metals and H+, give rise to dependences upon water chemistry. There is evidence that combinations of metals are active in the field; the main study conducted so far demonstrated the combined effects of Al and Zn, and suggested, less certainly, that Cu and H+ can also contribute. Chemical speciation is essential to interpret and predict observed effects in the field. Speciation results need to be combined with a model that relates free ion concentrations to toxic effect. Understanding the toxic effects of heavy metals derived from abandoned mines requires the simultaneous consideration of the acidity-related components Al and H+. There are a number of reasons why organisms in waters affected by abandoned mines may experience different levels of metal toxicity than in the laboratory. This could lead to discrepancies between actual field behaviour and that predicted by EQS derived from laboratory experiments, as would be applied within the WFD. The main factors to consider are adaptation/acclimation, water chemistry, and the effects of combinations of metals. Secondary effects are metals in food, metals supplied by sediments, and variability in stream flows. Two of the most prominent factors, namely adaptation/ acclimation and bioavailability, could justify changes in EQS or the adoption of an alternative measure of toxic effects in the field. Given that abandoned mines are widespread in England and Wales, and the high cost of their remediation to meet proposed WFD EQS criteria, further research into the question is clearly justified. Although ecological communities of mine-affected streamwaters might be over-protected by proposed WFD EQS, there are some conditions under which metals emanating from abandoned mines definitely exert toxic effects on biota. The main issue is therefore the reliable identification of chemical conditions that are unacceptable and comparison of those conditions with those predicted by WFD EQS. If significant differences can convincingly be demonstrated, the argument could be made for alternative standards for waters affected by abandoned mines. Therefore in our view, the immediate research priority is to improve the quantification of metal effects under field circumstances. Demonstration of dose-response relationships, based on metal mixtures and their chemical speciation, and the use of better biological tools to detect and diagnose community-level impairment, would provide the necessary scientific information

    The effects of riparian forestry on invertebrate drift and brown trout in upland streams of contrasting acidity

    No full text
    International audienceVariations in macroinvertebrate drift and benthic invertebrate abundance were assessed in 30 upland Welsh streams of varying acidity (pH 6.0) and riparian land-use (conifer, moorland or native broadleaf). The consequences for the diet and condition of wild brown trout Salmo trutta were also assessed. As expected from previous studies, there were significant reductions in benthic invertebrate abundance, aquatic drift density (by >60%), aquatic drift biomass (by >35%), total drift density (by >35%) and total drift biomass (by >20%) at acid sites by comparison with circumneutral sites due largely to the scarcity of mayflies. Absolute drift from terrestrial sources was unrelated to stream pH but formed a significantly greater proportion of total drift at acid sites (30-65% of density) than at circumneutral sites (20-40%) as aquatic contributions declined. Most of this apparent land use effect reflected significantly increased terrestrial drift under broadleaves. There was no significant reduction in terrestrial or aquatic drift at conifer forest sites per se after accounting for low pH. Trout diet varied substantially between locations partly reflecting variations in drift: significantly fewer mayflies and stoneflies were eaten at acid sites, and significantly more terrestrial prey were eaten under broadleaves. However, acidity did not reduce trout condition or gut-fullness. Unexpectedly, trout condition was significantly enhanced at conifer sites, irrespective of their pH. Hence, acidity has greater effects on the benthic abundance and drift density of invertebrates in upland streams than does riparian land use. However, trout forage flexibly enough to offset any possible food deficit, for example by switching to chironomids and terrestrial invertebrates. Enhanced terrestrial contributions to invertebrate drift from riparian broadleaf trees may be important in supplementing foraging opportunities for trout where aquatic prey are scarce. These data illustrate the value of native tree species in riparian locations in upland Britain and the energy subsidy they provide might well be disproportionately important for otherwise impoverished acid streams Keywords: brown trout, land-use, acidification, drift, forestry, stream

    Differential effects of phototherapy, adalimumab and betamethasone/calcipotriol on effector and regulatory T cells in psoriasis

    Get PDF
    I.S.K. thanks the Egyptian Government for financial support through the Egyptian Cultural Bureau Office. This work was partially supported by a National Health Service endowment grant RG12745 to A.D.O. and I.S.K. We thank Linda Lawson,the biologics nurse, all the staff members at the dermatology department and the participants.Peer reviewedPostprin

    Decomposing the stock market intraday dynamics

    Full text link
    The correlation matrix formalism is used to study temporal aspects of the stock market evolution. This formalism allows to decompose the financial dynamics into noise as well as into some coherent repeatable intraday structures. The present study is based on the high-frequency Deutsche Aktienindex (DAX) data over the time period between November 1997 and September 1999, and makes use of both, the corresponding returns as well as volatility variations. One principal conclusion is that a bulk of the stock market dynamics is governed by the uncorrelated noise-like processes. There exists however a small number of components of coherent short term repeatable structures in fluctuations that may generate some memory effects seen in the standard autocorrelation function analysis. Laws that govern fluctuations associated with those various components are different, which indicates an extremely complex character of the financial fluctuations.Comment: 15 pages, 13 PostScript figure

    An observational prospective study of topical acidified nitrite for killing methicillin-resistant Staphylococcus aureus (MRSA) in contaminated wounds

    Get PDF
    Background Endogenous nitric oxide (NO) kills bacteria and other organisms as part of the innate immune response. When nitrite is exposed to low pH, NO is generated and has been used as an NO delivery system to treat skin infections. We demonstrated eradication of MRSA carriage from wounds using a topical formulation of citric acid (4.5%) and sodium nitrite (3%) creams co-applied for 5 days to 15 wounds in an observational prospective pilot study of 8 patients. Findings Following treatment with topical citric acid and sodium nitrite, 9 of 15 wounds (60%) and 3 of 8 patients (37%) were cleared of infection. MRSA isolates from these patients were all sensitive to acidified nitrite in vitro compared to methicillin-sensitive S. aureus and a reference strain of MRSA. Conclusions Nitric oxide and acidified nitrite offer a novel therapy for control of MRSA in wounds. Wounds that were not cleared of infection may have been re-contaminated or the bioavailability of acidified nitrite impaired by local factors in the tissue

    Comparative functional histopathology of human breast carcinoma xenografts.

    Get PDF
    A series of xenografts of human breast carcinomas has been established and serially transplanted in immune-suppressed mice. Certain structural and functional features of the original human tumours, including carcinoembryonic antigen and epithelial membrane antigen, continue to be expressed by the resulting xenografts. Stromal responses such as elastosis and oestrogen-receptor activity were lost by the xenografts. No metastases were detected in tumour-bearing mice. This study suggests that xenografts may have some value in experimental pathology as one type of model of human breast carcinoma
    corecore