5,850 research outputs found
Exotic quark effects on the Higgs sector of the USSM at the LHC
The Higgs sector of the U(1)-extended supersymmetric model is studied with
great detail. We calculate the masses of the Higgs bosons at the one-loop
level. We also calculate at the one-loop level the gluon-involving processes
for the productions and decays of the scalar Higgs bosons of the model at the
energy of the CERN Large Hadron Collider (LHC), where the radiative corrections
due to the loops of top, bottom, and exotic quarks and their scalar partners
are taken into account. We find that the exotic quark and exotic scalar quarks
in the model may manifest themselves at the LHC, since the production of the
heaviest scalar Higgs boson via gluon fusion processes is mediated virtually by
the loops of exotic quark and exotic scalar quarks, for a reasonable parameter
set of the model.Comment: 36 pages, 13 figures, JP
Higgs bosons of a supersymmetric model at the Large Hadron Collider
It is found that CP symmetry may be explicitly broken in the Higgs sector of
a supersymmetric model with two extra neutral gauge bosons at the
one-loop level. The phenomenology of the model, the Higgs sector in particular,
is studied for a reasonable parameter space of the model, in the presence of
explicit CP violation at the one-loop level. At least one of the neutral Higgs
bosons of the model might be produced via the fusion process at the Large
Hadron Collider.Comment: 23 pages, 5 figures, JHE
Stress relaxation and mechanical properties of RL-1973 and PD-200-16 silicone resin sponge materials
Stress relaxation tests were conducted by loading specimens in double-lap shear to a preselected strain level and monitoring the decay of stress with time. The stress relaxation response characteristics were measured over a temperature range of 100 to 300 K and four strain levels. It is concluded that only a slight amount of stress relaxation was observed, and the stiffness increased approximately two orders of magnitude over the range of temperatures
Explicit CP violation in a MSSM with an extra
We study that a minimal supersymmetric standard model with an extra
gauge symmetry may accommodate the explicit CP violation at the one-loop level
through radiative corrections. This model is CP conserving at the tree level
and cannot realize the spontaneous CP violation for a wide parameter space at
the one-loop level. In explicit CP violation scenario, we calculate the Higgs
boson masses and the magnitude of the scalar-pseudoscalar mixings in this model
at the one-loop level by taking into account the contributions of top quarks,
bottom quarks, exotic quarks, and their superpartners. In particular, we
investigate how the exotic quarks and squarks would affect the
scalar-pseudoscalar mixings. It is observed that the size of the mixing between
the heaviest scalar and pseudoscalar Higgs bosons is changed up to 20 % by a
complex phase originated from the exotic quark sector of this model.Comment: 19 pages, 3 figure
Higgs bosons of a supersymmetric model at the ILC
We study the scalar Higgs sector of the next-to-minimal supersymmetric
standard model with an extra U(1), which has two Higgs doublets and a Higgs
singlet, in the light leptophobic scenario where the extra neutral gauge
boson does not couple to charged leptons. In this model, we find that the
sum of the squared coupling coefficients of the three neutral scalar Higgs
bosons to , normalized by the corresponding SM coupling coefficient is
noticeably smaller than unity, due to the effect of the extra U(1), for a
reasonable parameter space of the model, whereas it is unity in the
next-to-minimal supersymmetric standard model. Thus, these two models may be
distinguished if the coupling coefficients of neutral scalar Higgs bosons to
are measured at the future International Linear Collider by producing them
via the Higgs-strahlung, fusion, and fusion processes.Comment: 12 pages, 2 figures, 1 table, PR
- …