91,541 research outputs found

    Constrained Molecular Dynamics Simulations of Atomic Ground-States

    Full text link
    Constrained molecular dynamics(CoMD) model, previously introduced for nuclear dynamics, has been extended to the atomic structure and collision calculations. Quantum effects corresponding to the Pauli and Heisenberg principle are enforced by constraints, in a parameter-free way. Our calculations for small atomic system, H, He, Li, Be, F reproduce the ground-state binding energies within 3%, compared with the results of quantum mechanical Hartree-Fock calculations.Comment: 3 pages, 2 figure

    Gamma-ray bursts during neutron star formation. Gamma-ray bursts and transient X-ray sources

    Get PDF
    Discussions are presented of the associations between cosmic gamma ray bursts and transient X-ray sources, and the release of gravitational binding energy during the formation of neutron stars. The model for studying the associations is described along with the release of neutrinos during the collapse of white dwarfs

    Asymptotic Methods for Metal Oxide Semiconductor Field Effect Transistor Modeling

    Get PDF
    The behavior of metal oxide semiconductor field effect transistors (MOSFETs) with small aspect ratio and large doping levels is analyzed using formal perturbation techniques. Specifically, the influence of interface layers in the potential on the averaged channel conductivity is closely examined. The interface and internal layers that occur in the potential are resolved in the limit of large doping using the method of matched asymptotic expansions. This approach, together with other asymptotic techniques, provides both a pointwise description of the state variables as well as lumped current-voltage relations that vary uniformly across the various bias regimes. These current-voltage relations are derived for a variable doping model respresenting a particular class of devices

    Subwavelength position sensing using nonlinear feedback and wave chaos

    Full text link
    We demonstrate a position-sensing technique that relies on the inherent sensitivity of chaos, where we illuminate a subwavelength object with a complex structured radio-frequency field generated using wave chaos and a nonlinear feedback loop. We operate the system in a quasi-periodic state and analyze changes in the frequency content of the scalar voltage signal in the feedback loop. This allows us to extract the object's position with a one-dimensional resolution of ~\lambda/10,000 and a two-dimensional resolution of ~\lambda/300, where \lambda\ is the shortest wavelength of the illuminating source.Comment: 4 pages, 4 figure

    The WISE InfraRed Excesses around Degenerates (WIRED) Survey

    Get PDF
    The Wide-field Infrared Survey Explorer (WISE) is a NASA medium class Explorer mission that performed an all sky survey in four infrared bands. We present an overview of the WISE InfraRed Excesses around Degenerates (WIRED) Survey, which has the goals of characterizing white dwarf stars in the WISE bands, confirming objects known to have infrared excess from past observations, and revealing new examples of white dwarfs with infrared excess that can be attributed to unresolved companions or debris disks. We obtained preliminary WISE detections (S/N > 2) in at least one band of 405 white dwarfs from the 9316 unique possible targets in the Sloan Digital Sky Survey Data Release 4 Catalog of Spectroscopically Identified White Dwarfs (not all potential targets were available in the sky coverage used here). A companion paper in this volume discusses specific results from our target detections

    State-dependent rotations of spins by weak measurements

    Full text link
    IIt is shown that a weak measurement of a quantum system produces a new state of the quantum system which depends on the prior state, as well as the (uncontrollable) measured position of the pointer variable of the weak measurement apparatus. The result imposes a constraint on hidden-variable theories which assign a different state to a quantum system than standard quantum mechanics. The constraint means that a crypto-nonlocal hidden-variable theory can be ruled out in a more direct way than previously.Comment: 10 pages, 2 figures. Substantially revised to concentrate on weak measurement transformation of states and application to crypto-nonlocal hidden-variable theor

    On number fields with nontrivial subfields

    Full text link
    What is the probability for a number field of composite degree dd to have a nontrivial subfield? As the reader might expect the answer heavily depends on the interpretation of probability. We show that if the fields are enumerated by the smallest height of their generators the probability is zero, at least if d>6d>6. This is in contrast to what one expects when the fields are enumerated by the discriminant. The main result of this article is an estimate for the number of algebraic numbers of degree d=end=e n and bounded height which generate a field that contains an unspecified subfield of degree ee. If n>max{e2+e,10}n>\max\{e^2+e,10\} we get the correct asymptotics as the height tends to infinity

    Comment on "Breakdown of the Internet under Intentional Attack"

    Full text link
    We obtain the exact position of the percolation threshold in intentionally damaged scale-free networks.Comment: 1 page, to appear in Phys. Rev. Let

    Comparing the Weighted Density Approximation with the LDA and GGA for Ground State Properties of Ferroelectric Perovskites

    Full text link
    First-principles calculations within the weighted density approximation (WDA) were performed for ground state properties of ferroelectric perovskites PbTiO3_3, BaTiO3_3, SrTiO3_3, KNbO3_3 and KTaO3_3. We used the plane-wave pseudopotential method, a pair distribution function GG based on the uniform electron gas, and shell partitioning. Comparing with the local density approximation (LDA) and the general gradient approximation (GGA), we found that the WDA significantly improves the equilibrium volume of these materials in cubic symmetry over both the LDA and GGA; Ferroelectric instabilities calculated by the WDA agree with the LDA and GGA very well; At the experimental ferroelectric lattice, optimized atom positions by the WDA are in good agreement with measured data; However the WDA overestimates the strain of tetragonal PbTiO3_3 at experimental volume; The WDA overestimates the volume of fully relaxed structures, but the GGA results are even worse. Some calculations were also done with other models for GG. It is found that a GG with longer range behavior yields improved relaxed structures. Possible avenues for improving the WDA are discussed.Comment: 19 pages, 3 figures, submitted to PR
    corecore