9,663 research outputs found

    Elemental abundances of mercury-manganese stars and the population 2 type star HD 109995

    Get PDF
    Ultraviolet and optical data for the Hg Mn stars Coronae Borealis and Cancri is being combined with data for the field horizontal branch population II star HD 109995 in order to derive the element abundances in their photospheres. Data collected by IUE is being utilized

    The field horizontal-branch star HD 109995: New results with coadded ultraviolet and optical region spectra

    Get PDF
    A comprehensive ultraviolet and optical region abundance analysis of the field horizontal branch Population 2 A-type star HD 109995 is described. Coaddition of IUE high dispersion images and DAO 6.5 A/mm IIaO spectrograms improved the signal-to-noise ratio of the data. We have identified ultraviolet lines whose analysis will provide more complete and accurate elemental abundances than those obtained from optical region spectra alone. A preliminary elemental abundance analysis of the optical region shows that log Z/Z (solar) approx. = -2. A first attempt to synthesize two Fe 2 ultraviolet resonance lines yields an iron abundance a few tenths of a deg higher than the average obtained from optical region Fe 2 lines

    Xenon in Mercury-Manganese Stars

    Get PDF
    Previous studies of elemental abundances in Mercury-Manganese (HgMn) stars have occasionally reported the presence of lines of the ionized rare noble gas Xe II, especially in a few of the hottest stars with Teff ~ 13000--15000 K. A new study of this element has been undertaken using observations from Lick Observatory's Hamilton Echelle Spectrograph. In this work, the spectrum synthesis program UCLSYN has been used to undertake abundance analysis assuming LTE. We find that in the Smith & Dworetsky sample of HgMn stars, Xe is vastly over-abundant in 21 of 22 HgMn stars studied, by factors of 3.1--4.8 dex. There does not appear to be a significant correlation of Xe abundance with Teff. A comparison sample of normal late B stars shows no sign of Xe II lines that could be detected, consistent with the expected weakness of lines at normal abundance. The main reason for the previous lack of widespread detection in HgMn stars is probably due to the strongest lines being at longer wavelengths than the photographic blue. The lines used in this work were 4603.03A, 4844.33A and 5292.22A.Comment: 8 pages, 4 figures. Accepted by Monthly Notices of the Royal Astronomical Society, 8 January 200

    The unexplained nature of reading.

    Get PDF
    The effects of properties of words on their reading aloud response times (RTs) are 1 major source of evidence about the reading process. The precision with which such RTs could potentially be predicted by word properties is critical to evaluate our understanding of reading but is often underestimated due to contamination from individual differences. We estimated this precision without such contamination individually for 4 people who each read 2,820 words 50 times each. These estimates were compared to the precision achieved by a 31-variable regression model that outperforms current cognitive models on variance-explained criteria. Most (around 2/3) of the meaningful (non-first-phoneme, non-noise) word-level variance remained unexplained by this model. Considerable empirical and theoretical-computational effort has been expended on this area of psychology, but the high level of systematic variance remaining unexplained suggests doubts regarding contemporary accounts of the details of the mechanisms of reading at the level of the word. Future assessment of models can take advantage of the availability of our precise participant-level database

    Inclination-Independent Galaxy Classification

    Full text link
    We present a new method to classify galaxies from large surveys like the Sloan Digital Sky Survey using inclination-corrected concentration, inclination-corrected location on the color-magnitude diagram, and apparent axis ratio. Explicitly accounting for inclination tightens the distribution of each of these parameters and enables simple boundaries to be drawn that delineate three different galaxy populations: Early-type galaxies, which are red, highly concentrated, and round; Late-type galaxies, which are blue, have low concentrations, and are disk dominated; and Intermediate-type galaxies, which are red, have intermediate concentrations, and have disks. We have validated our method by comparing to visual classifications of high-quality imaging data from the Millennium Galaxy Catalogue. The inclination correction is crucial to unveiling the previously unrecognized Intermediate class. Intermediate-type galaxies, roughly corresponding to lenticulars and early spirals, lie on the red sequence. The red sequence is therefore composed of two distinct morphological types, suggesting that there are two distinct mechanisms for transiting to the red sequence. We propose that Intermediate-type galaxies are those that have lost their cold gas via strangulation, while Early-type galaxies are those that have experienced a major merger that either consumed their cold gas, or whose merger progenitors were already devoid of cold gas (the ``dry merger'' scenario).Comment: Accepted for publication in ApJ. 7 pages in emulateap

    Lanthanides and other spectral oddities in a Centauri

    Full text link
    Context: There is considerable interest in the helium variable a Cen as a bridge between helium-weak and helium-strong CP stars. Aims: We investigate Ce III and other possible lanthanides in the spectrum the of hottest chemically peculiar (CP) star in which these elements have been found. A {Kr II line appears within a broad absorption which we suggest may be due to a high-level transition in C II. Methods: Wavelengths and equivalent widths are measured on high-resolution UVES spectra, analyzed, and their phase-variations investigated. Results: New, robust identifications of Ce III and Kr II are demonstrated. Nd III is likely present. A broad absorption near 4619[A] is present at all phases of a Cen, and in some other early B stars. Conclusions: The presence of lanthanides in a Cen strengthens the view that this star is a significant link between the cooler CP stars and the hotter helium-peculiar stars. Broad absorptions in a Cen are not well explained.Comment: Research Note accepted by Astronomy and Astrophysics; 4 pages, 4 Figs. 2 Table

    Instantaneous Pair Theory for High-Frequency Vibrational Energy Relaxation in Fluids

    Full text link
    Notwithstanding the long and distinguished history of studies of vibrational energy relaxation, exactly how it is that high frequency vibrations manage to relax in a liquid remains somewhat of a mystery. Both experimental and theoretical approaches seem to say that there is a natural frequency range associated with intermolecular motions in liquids, typically spanning no more than a few hundred cm^{-1}. Landau-Teller-like theories explain how a solvent can absorb any vibrational energy within this "band", but how is it that molecules can rid themselves of superfluous vibrational energies significantly in excess of these values? We develop a theory for such processes based on the idea that the crucial liquid motions are those that most rapidly modulate the force on the vibrating coordinate -- and that by far the most important of these motions are those involving what we have called the mutual nearest neighbors of the vibrating solute. Specifically, we suggest that whenever there is a single solvent molecule sufficiently close to the solute that the solvent and solute are each other's nearest neighbors, then the instantaneous scattering dynamics of the solute-solvent pair alone suffices to explain the high frequency relaxation. The many-body features of the liquid only appear in the guise of a purely equilibrium problem, that of finding the likelihood of particularly effective solvent arrangements around the solute. These results are tested numerically on model diatomic solutes dissolved in atomic fluids (including the experimentally and theoretically interesting case of I_2 in Xe). The instantaneous pair theory leads to results in quantitative agreement with those obtained from far more laborious exact molecular dynamics simulations.Comment: 55 pages, 6 figures Scheduled to appear in J. Chem. Phys., Jan, 199

    High resolution spectroscopic study of red clump stars in the Galaxy: iron group elements

    Get PDF
    The main atmospheric parameters and abundances of the iron group elements (vanadium, chromium, iron, cobalt and nickel) are determined for 62 red giant "clump" stars revealed in the Galactic field by the Hipparcos orbiting observatory. The stars form a homogeneous sample with the mean value of temperature T=4750 +- 160K, of surface gravity log g = 2.41 +- 0.26 and the mean value of metallicity [Fe/H] = -0.04 +- 0.15 dex. A Gaussian fit to the [Fe/H] distribution produces the mean [Fe/H] = -0.01 dex and dispersion of [Fe/H] = 0.08 dex. The near-solar metallicity and small dispersion of [Fe/H] of clump stars of the Galaxy obtained in this work confirm the theoretical model of the Hipparcos clump by Girardi & Salaris (2001). This suggests that nearby clump stars are (in the mean) relatively young objects, reflecting mainly the near-solar metallicities developed in the local disk during the last few Gyrs of its history. We find iron group element to iron abundance ratios in clump giants to be close to solar.Comment: 9 pages, 7 figures, accepted for publication in MNRA

    Vibration characteristics of ring-stiffened orthotropic shells of revolution

    Get PDF
    Computer program solves vibration modes and frequencies of thin shells of revolution having general meridional curvature and orthotropic elastic properties in order to evaluate the dynamic behavior of structures with thin shelled components
    corecore